Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.§ 48. Erweiterte Syllogistik. 21'. bA1, B = (A1 + B1 = 1) (A1 B 0) (A1 B1 0) 22'. bA1, B1 = (A1 + B = 1) (A1 B 0) (A1 B1 0) 23'. g = gA, B = (A1 + B = 1) (A B 0) (A1 B 0) 24'. gA, B1 = (A1 + B1 = 1) (A B1 0) (A1 B1 0) 25'. gA1, B = (A + B = 1) (A B 0) (A1 B 0) 26'. gA1, B1 = (A + B1 = 1) (A B1 0) (A1 B1 0) 27'. d = dA, B = (A B + A1 B1 = 1) (A B 0) 28'. dA, B1 = (A B1 + A1 B = 1) (A B1 0) 29'. dA1, B = (A B1 + A1 B = 1) (A1 B 0) 30'. dA1, B1 = (A B + A1 B1 = 1) (A1 B1 0) Verneinungen ebendieser. 191'. b1 = b1A, B = (A1 + B1 = 1) + (A1 + B = 1) + (A1 + B 0) 201'. b1A, B1 = (A1 + B1 = 1) + (A1 + B = 1) + (A1 B1 0) 211'. b1A1, B = (A + B1 = 1) + (A + B = 1) + (A B 0) 221'. b1A1, B1 = (A + B1 = 1) + (A + B = 1) + (A B1 0) 231'. g1 = g1A, B = (A1 + B1 = 1) + (A B1 0) 241'. g1A, B1 = (A1 + B = 1) + (A + B = 1) + (A B 0) 251'. g1A1, B = (A1 + B1 = 1) + (A + B1 = 1) + (A1 B1 0) 261'. g1A1, B1 = (A1 + B = 1) + (A + B = 1) + (A1 B 0) 271'. d1 = d1A, B = (A1 + B1 = 1) + (A B1 + A1 B 0) 281'. d1A, B1 = (A1 + B = 1) + (A B + A1 B1 0) 291'. d1A1, B = (A + B1 = 1) + (A B + A1 B1 0) 301'. d1A1, B1 = (A + B = 1) + (A B1 + A1 B 0). Hiezu ist hervorzuheben, dass die nach A und B unsymmetrischen Schröder, Algebra der Logik. II. 23
§ 48. Erweiterte Syllogistik. 21’. βA1, B = (A1 + B1 = 1) (A1 B ≠ 0) (A1 B1 ≠ 0) 22’. βA1, B1 = (A1 + B = 1) (A1 B ≠ 0) (A1 B1 ≠ 0) 23’. γ = γA, B = (A1 + B = 1) (A B ≠ 0) (A1 B ≠ 0) 24’. γA, B1 = (A1 + B1 = 1) (A B1 ≠ 0) (A1 B1 ≠ 0) 25’. γA1, B = (A + B = 1) (A B ≠ 0) (A1 B ≠ 0) 26’. γA1, B1 = (A + B1 = 1) (A B1 ≠ 0) (A1 B1 ≠ 0) 27’. δ = δA, B = (A B + A1 B1 = 1) (A B ≠ 0) 28’. δA, B1 = (A B1 + A1 B = 1) (A B1 ≠ 0) 29’. δA1, B = (A B1 + A1 B = 1) (A1 B ≠ 0) 30’. δA1, B1 = (A B + A1 B1 = 1) (A1 B1 ≠ 0) Verneinungen ebendieser. 191’. β1 = β1A, B = (A1 + B1 = 1) + (A1 + B = 1) + (A1 + B ≠ 0) 201’. β1A, B1 = (A1 + B1 = 1) + (A1 + B = 1) + (A1 B1 ≠ 0) 211’. β1A1, B = (A + B1 = 1) + (A + B = 1) + (A B ≠ 0) 221’. β1A1, B1 = (A + B1 = 1) + (A + B = 1) + (A B1 ≠ 0) 231’. γ1 = γ1A, B = (A1 + B1 = 1) + (A B1 ≠ 0) 241’. γ1A, B1 = (A1 + B = 1) + (A + B = 1) + (A B ≠ 0) 251’. γ1A1, B = (A1 + B1 = 1) + (A + B1 = 1) + (A1 B1 ≠ 0) 261’. γ1A1, B1 = (A1 + B = 1) + (A + B = 1) + (A1 B ≠ 0) 271’. δ1 = δ1A, B = (A1 + B1 = 1) + (A B1 + A1 B ≠ 0) 281’. δ1A, B1 = (A1 + B = 1) + (A B + A1 B1 ≠ 0) 291’. δ1A1, B = (A + B1 = 1) + (A B + A1 B1 ≠ 0) 301’. δ1A1, B1 = (A + B = 1) + (A B1 + A1 B ≠ 0). Hiezu ist hervorzuheben, dass die nach A und B unsymmetrischen Schröder, Algebra der Logik. II. 23
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <pb facs="#f0377" n="353"/> <fw place="top" type="header">§ 48. Erweiterte Syllogistik.</fw><lb/> <p>21’. <hi rendition="#et"><hi rendition="#i">β</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>22’. <hi rendition="#et"><hi rendition="#i">β</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>23’. <hi rendition="#et"><hi rendition="#i">γ</hi> = <hi rendition="#i">γ</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0)</hi></p><lb/> <p>24’. <hi rendition="#et"><hi rendition="#i">γ</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>25’. <hi rendition="#et"><hi rendition="#i">γ</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0)</hi></p><lb/> <p>26’. <hi rendition="#et"><hi rendition="#i">γ</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>27’. <hi rendition="#et"><hi rendition="#i">δ</hi> = <hi rendition="#i">δ</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">A B</hi> ≠ 0)</hi></p><lb/> <p>28’. <hi rendition="#et"><hi rendition="#i">δ</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>29’. <hi rendition="#et"><hi rendition="#i">δ</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0)</hi></p><lb/> <p>30’. <hi rendition="#et"><hi rendition="#i">δ</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p> <hi rendition="#c"><hi rendition="#g">Verneinungen ebendieser</hi>.</hi> </p><lb/> <p>19<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">β</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">β</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> ≠ 0)</hi></p><lb/> <p>20<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">β</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>21<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">β</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A B</hi> ≠ 0)</hi></p><lb/> <p>22<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">β</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>23<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">γ</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">γ</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>24<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">γ</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A B</hi> ≠ 0)</hi></p><lb/> <p>25<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">γ</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>26<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">γ</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0)</hi></p><lb/> <p>27<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">δ</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">δ</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0)</hi></p><lb/> <p>28<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">δ</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>29<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">δ</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>30<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">δ</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0).</hi></p><lb/> <p>Hiezu ist hervorzuheben, dass die nach <hi rendition="#i">A</hi> und <hi rendition="#i">B unsymmetrischen</hi><lb/> Beziehungen als paarweise auftretende wie folgt auf einander zurück-<lb/> kommen:<lb/><hi rendition="#c"><hi rendition="#i">k</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">h</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi>, <hi rendition="#i">n</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">m</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi>, <hi rendition="#i">e</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">f</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi>, <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi>, <hi rendition="#i">β</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">γ</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi></hi><lb/> (desgleichen, <hi rendition="#i">A</hi> und <hi rendition="#i">B</hi> vertauscht), wogegen:<lb/><hi rendition="#c"><hi rendition="#i">d</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi> = <hi rendition="#i">d</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi>, <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi>, <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi>, <hi rendition="#i">g</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi> = <hi rendition="#i">g</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> oder <hi rendition="#i">α</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi> = <hi rendition="#i">α</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi>,<lb/><hi rendition="#i">δ</hi><hi rendition="#sup"><hi rendition="#i">B</hi>, <hi rendition="#i">A</hi></hi> = <hi rendition="#i">δ</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi></hi><lb/><hi rendition="#i">symmetrische</hi> Beziehungen sind. Und analog auch deren Negationen.</p><lb/> <fw place="bottom" type="sig"><hi rendition="#k">Schröder</hi>, Algebra der Logik. II. 23</fw><lb/> </div> </div> </div> </body> </text> </TEI> [353/0377]
§ 48. Erweiterte Syllogistik.
21’. βA1, B = (A1 + B1 = 1) (A1 B ≠ 0) (A1 B1 ≠ 0)
22’. βA1, B1 = (A1 + B = 1) (A1 B ≠ 0) (A1 B1 ≠ 0)
23’. γ = γA, B = (A1 + B = 1) (A B ≠ 0) (A1 B ≠ 0)
24’. γA, B1 = (A1 + B1 = 1) (A B1 ≠ 0) (A1 B1 ≠ 0)
25’. γA1, B = (A + B = 1) (A B ≠ 0) (A1 B ≠ 0)
26’. γA1, B1 = (A + B1 = 1) (A B1 ≠ 0) (A1 B1 ≠ 0)
27’. δ = δA, B = (A B + A1 B1 = 1) (A B ≠ 0)
28’. δA, B1 = (A B1 + A1 B = 1) (A B1 ≠ 0)
29’. δA1, B = (A B1 + A1 B = 1) (A1 B ≠ 0)
30’. δA1, B1 = (A B + A1 B1 = 1) (A1 B1 ≠ 0)
Verneinungen ebendieser.
191’. β1 = β1A, B = (A1 + B1 = 1) + (A1 + B = 1) + (A1 + B ≠ 0)
201’. β1A, B1 = (A1 + B1 = 1) + (A1 + B = 1) + (A1 B1 ≠ 0)
211’. β1A1, B = (A + B1 = 1) + (A + B = 1) + (A B ≠ 0)
221’. β1A1, B1 = (A + B1 = 1) + (A + B = 1) + (A B1 ≠ 0)
231’. γ1 = γ1A, B = (A1 + B1 = 1) + (A B1 ≠ 0)
241’. γ1A, B1 = (A1 + B = 1) + (A + B = 1) + (A B ≠ 0)
251’. γ1A1, B = (A1 + B1 = 1) + (A + B1 = 1) + (A1 B1 ≠ 0)
261’. γ1A1, B1 = (A1 + B = 1) + (A + B = 1) + (A1 B ≠ 0)
271’. δ1 = δ1A, B = (A1 + B1 = 1) + (A B1 + A1 B ≠ 0)
281’. δ1A, B1 = (A1 + B = 1) + (A B + A1 B1 ≠ 0)
291’. δ1A1, B = (A + B1 = 1) + (A B + A1 B1 ≠ 0)
301’. δ1A1, B1 = (A + B = 1) + (A B1 + A1 B ≠ 0).
Hiezu ist hervorzuheben, dass die nach A und B unsymmetrischen
Beziehungen als paarweise auftretende wie folgt auf einander zurück-
kommen:
kA, B = hB, A, nA, B = mB, A, eA, B = fB, A, bA, B = cB, A, βA, B = γB, A
(desgleichen, A und B vertauscht), wogegen:
dB, A = dA, B, aB, A = aA, B, lB, A = lA, B, gB, A = gA, B oder αB, A = αA, B,
δB, A = δA, B
symmetrische Beziehungen sind. Und analog auch deren Negationen.
Schröder, Algebra der Logik. II. 23
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |