Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.Dreiundzwanzigste Vorlesung. 81'. e1A, B1 = f1A1, B = (A1 + B1 = 1) + (A1 B1 0) 91'. f1A, B1 = e1A1, B = (A + B = 1) + (A B 0) 101'. f1 = f1A, B = e1A1, B1 = (A + B1 = 1) + (A B1 0). Beziehungen, welche zugleich Grund-, Elementar- und 11'. a = aA, B = cA, B1 = bA1, B = lA1, B1 = (A1 + B1 = 1) 12'. c = cA, B = aA, B1 = bA1, B1 = lA1, B = (A1 + B = 1) 13'. b = bA, B = aA1, B = cA1, B1 = lA, B1 = (A + B1 = 1) 14'. l = lA, B = aA1, B1 = cA1, B = bA, B1 = (A + B = 1) Negationen derselben. 111'. a1 = a1A, B = c1A, B1 = b1A1, B = l1A1, B1 = (A B 0) 121'. c1 = c1A, B = a1A, B1 = b1A1, B1 = l1A1, B = (A B1 0) 131'. b1 = b1A, B = a1A1, B = c1A1, B1 = l1A, B1 = (A1 B 0) 141'. l1 = l1A, B = a1A1, B1 = c1A1, B = b1A, B1 = (A1 B1 0) (Nicht-primitive, resp.) Die übrigen Beziehungen, welche zu- 15'. g = gA, B = (A B 0) (A B1 0) (A1 B 0) = aA, B = a 16'. gA, B1 = (A B 0) (A B1 0) (A1 B1 0) = aA, B1 17'. gA1, B = (A B 0) (A1 B 0) (A1 B1 0) = aA1, B 18'. gA1, B1 = (A B1 0) (A1 B 0) (A1 B1 0) = aA1, B1 Verneinungen derselben. 151'. g1 = g1A, B = (A1 + B1 = 1) + (A1 + B = 1) + (A + B1 = 1) = a1A, B = a1 161'. g1A, B1 = (A1 + B1 = 1) + (A1 + B = 1) + (A + B = 1) = a1A, B1 171'. g1A1, B = (A1 + B1 = 1) + (A + B1 = 1) + (A + B = 1) = a1A1, B 181'. g1A1, B1 = (A1 + B = 1) + (A + B1 = 1) + (A + B = 1) = a1A1, B1 Die Beziehungen, welche nur Elementarbeziehungen sind. 19'. b = bA, B = (A + B1 = 1) (A B 0) (A B1 0) 20'. bA, B1 = (A + B = 1) (A B 0) (A B1 0) Dreiundzwanzigste Vorlesung. 81’. e1A, B1 = f1A1, B = (A1 + B1 = 1) + (A1 B1 ≠ 0) 91’. f1A, B1 = e1A1, B = (A + B = 1) + (A B ≠ 0) 101’. f1 = f1A, B = e1A1, B1 = (A + B1 = 1) + (A B1 ≠ 0). Beziehungen, welche zugleich Grund-, Elementar- und 11’. a = aA, B = cA, B1 = bA1, B = lA1, B1 = (A1 + B1 = 1) 12’. c = cA, B = aA, B1 = bA1, B1 = lA1, B = (A1 + B = 1) 13’. b = bA, B = aA1, B = cA1, B1 = lA, B1 = (A + B1 = 1) 14’. l = lA, B = aA1, B1 = cA1, B = bA, B1 = (A + B = 1) Negationen derselben. 111’. a1 = a1A, B = c1A, B1 = b1A1, B = l1A1, B1 = (A B ≠ 0) 121’. c1 = c1A, B = a1A, B1 = b1A1, B1 = l1A1, B = (A B1 ≠ 0) 131’. b1 = b1A, B = a1A1, B = c1A1, B1 = l1A, B1 = (A1 B ≠ 0) 141’. l1 = l1A, B = a1A1, B1 = c1A1, B = b1A, B1 = (A1 B1 ≠ 0) (Nicht-primitive, resp.) Die übrigen Beziehungen, welche zu- 15’. g = gA, B = (A B ≠ 0) (A B1 ≠ 0) (A1 B ≠ 0) = αA, B = α 16’. gA, B1 = (A B ≠ 0) (A B1 ≠ 0) (A1 B1 ≠ 0) = αA, B1 17’. gA1, B = (A B ≠ 0) (A1 B ≠ 0) (A1 B1 ≠ 0) = αA1, B 18’. gA1, B1 = (A B1 ≠ 0) (A1 B ≠ 0) (A1 B1 ≠ 0) = αA1, B1 Verneinungen derselben. 151’. g1 = g1A, B = (A1 + B1 = 1) + (A1 + B = 1) + (A + B1 = 1) = α1A, B = α1 161’. g1A, B1 = (A1 + B1 = 1) + (A1 + B = 1) + (A + B = 1) = α1A, B1 171’. g1A1, B = (A1 + B1 = 1) + (A + B1 = 1) + (A + B = 1) = α1A1, B 181’. g1A1, B1 = (A1 + B = 1) + (A + B1 = 1) + (A + B = 1) = α1A1, B1 Die Beziehungen, welche nur Elementarbeziehungen sind. 19’. β = βA, B = (A + B1 = 1) (A B ≠ 0) (A B1 ≠ 0) 20’. βA, B1 = (A + B = 1) (A B ≠ 0) (A B1 ≠ 0) <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <pb facs="#f0376" n="352"/> <fw place="top" type="header">Dreiundzwanzigste Vorlesung.</fw><lb/> <p>8<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">f</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>9<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">f</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A B</hi> ≠ 0)</hi></p><lb/> <p>10<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">f</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0).</hi></p><lb/> <p> <hi rendition="#c"><hi rendition="#g">Beziehungen</hi>, <hi rendition="#g">welche zugleich Grund-</hi>, <hi rendition="#g">Elementar- und<lb/> primitive Beziehungen sind</hi> (zusammen mit ihren Negationen die<lb/> 8 Beziehungen <hi rendition="#g">De Morgan’</hi>s).</hi> </p><lb/> <p>11’. <hi rendition="#et"><hi rendition="#i">a</hi> = <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1)</hi></p><lb/> <p>12’. <hi rendition="#et"><hi rendition="#i">c</hi> = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1)</hi></p><lb/> <p>13’. <hi rendition="#et"><hi rendition="#i">b</hi> = <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1)</hi></p><lb/> <p>14’. <hi rendition="#et"><hi rendition="#i">l</hi> = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1)</hi></p><lb/> <p> <hi rendition="#c"><hi rendition="#g">Negationen derselben</hi>.</hi> </p><lb/> <p>11<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A B</hi> ≠ 0)</hi></p><lb/> <p>12<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>13<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">b</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0)</hi></p><lb/> <p>14<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">l</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p> <hi rendition="#c">(Nicht-primitive, resp.) <hi rendition="#g">Die übrigen Beziehungen</hi>, <hi rendition="#g">welche zu-<lb/> gleich Grund- und Elementarbeziehungen sind</hi>.</hi> </p><lb/> <p>15’. <hi rendition="#et"><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) = <hi rendition="#i">α</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">α</hi></hi></p><lb/> <p>16’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0) = <hi rendition="#i">α</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi></hi></p><lb/> <p>17’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0) = <hi rendition="#i">α</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi></hi></p><lb/> <p>18’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0) = <hi rendition="#i">α</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi></hi></p><lb/> <p> <hi rendition="#c"><hi rendition="#g">Verneinungen derselben</hi>.</hi> </p><lb/> <p>15<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">g</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) = <hi rendition="#i">α</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">α</hi><hi rendition="#sub">1</hi></hi></p><lb/> <p>16<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) = <hi rendition="#i">α</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi></hi></p><lb/> <p>17<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) = <hi rendition="#i">α</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi></hi></p><lb/> <p>18<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) = <hi rendition="#i">α</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi></hi></p><lb/> <p> <hi rendition="#c"><hi rendition="#g">Die Beziehungen</hi>, <hi rendition="#g">welche nur Elementarbeziehungen sind</hi>.</hi> </p><lb/> <p>19’. <hi rendition="#et"><hi rendition="#i">β</hi> = <hi rendition="#i">β</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>20’. <hi rendition="#et"><hi rendition="#i">β</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> </div> </div> </div> </body> </text> </TEI> [352/0376]
Dreiundzwanzigste Vorlesung.
81’. e1A, B1 = f1A1, B = (A1 + B1 = 1) + (A1 B1 ≠ 0)
91’. f1A, B1 = e1A1, B = (A + B = 1) + (A B ≠ 0)
101’. f1 = f1A, B = e1A1, B1 = (A + B1 = 1) + (A B1 ≠ 0).
Beziehungen, welche zugleich Grund-, Elementar- und
primitive Beziehungen sind (zusammen mit ihren Negationen die
8 Beziehungen De Morgan’s).
11’. a = aA, B = cA, B1 = bA1, B = lA1, B1 = (A1 + B1 = 1)
12’. c = cA, B = aA, B1 = bA1, B1 = lA1, B = (A1 + B = 1)
13’. b = bA, B = aA1, B = cA1, B1 = lA, B1 = (A + B1 = 1)
14’. l = lA, B = aA1, B1 = cA1, B = bA, B1 = (A + B = 1)
Negationen derselben.
111’. a1 = a1A, B = c1A, B1 = b1A1, B = l1A1, B1 = (A B ≠ 0)
121’. c1 = c1A, B = a1A, B1 = b1A1, B1 = l1A1, B = (A B1 ≠ 0)
131’. b1 = b1A, B = a1A1, B = c1A1, B1 = l1A, B1 = (A1 B ≠ 0)
141’. l1 = l1A, B = a1A1, B1 = c1A1, B = b1A, B1 = (A1 B1 ≠ 0)
(Nicht-primitive, resp.) Die übrigen Beziehungen, welche zu-
gleich Grund- und Elementarbeziehungen sind.
15’. g = gA, B = (A B ≠ 0) (A B1 ≠ 0) (A1 B ≠ 0) = αA, B = α
16’. gA, B1 = (A B ≠ 0) (A B1 ≠ 0) (A1 B1 ≠ 0) = αA, B1
17’. gA1, B = (A B ≠ 0) (A1 B ≠ 0) (A1 B1 ≠ 0) = αA1, B
18’. gA1, B1 = (A B1 ≠ 0) (A1 B ≠ 0) (A1 B1 ≠ 0) = αA1, B1
Verneinungen derselben.
151’. g1 = g1A, B = (A1 + B1 = 1) + (A1 + B = 1) + (A + B1 = 1) = α1A, B = α1
161’. g1A, B1 = (A1 + B1 = 1) + (A1 + B = 1) + (A + B = 1) = α1A, B1
171’. g1A1, B = (A1 + B1 = 1) + (A + B1 = 1) + (A + B = 1) = α1A1, B
181’. g1A1, B1 = (A1 + B = 1) + (A + B1 = 1) + (A + B = 1) = α1A1, B1
Die Beziehungen, welche nur Elementarbeziehungen sind.
19’. β = βA, B = (A + B1 = 1) (A B ≠ 0) (A B1 ≠ 0)
20’. βA, B1 = (A + B = 1) (A B ≠ 0) (A B1 ≠ 0)
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |