Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.Dreiundzwanzigste Vorlesung. 81'. e1A, B1 = f1A1, B = (A1 + B1 = 1) + (A1 B1 0) 91'. f1A, B1 = e1A1, B = (A + B = 1) + (A B 0) 101'. f1 = f1A, B = e1A1, B1 = (A + B1 = 1) + (A B1 0). Beziehungen, welche zugleich Grund-, Elementar- und 11'. a = aA, B = cA, B1 = bA1, B = lA1, B1 = (A1 + B1 = 1) 12'. c = cA, B = aA, B1 = bA1, B1 = lA1, B = (A1 + B = 1) 13'. b = bA, B = aA1, B = cA1, B1 = lA, B1 = (A + B1 = 1) 14'. l = lA, B = aA1, B1 = cA1, B = bA, B1 = (A + B = 1) Negationen derselben. 111'. a1 = a1A, B = c1A, B1 = b1A1, B = l1A1, B1 = (A B 0) 121'. c1 = c1A, B = a1A, B1 = b1A1, B1 = l1A1, B = (A B1 0) 131'. b1 = b1A, B = a1A1, B = c1A1, B1 = l1A, B1 = (A1 B 0) 141'. l1 = l1A, B = a1A1, B1 = c1A1, B = b1A, B1 = (A1 B1 0) (Nicht-primitive, resp.) Die übrigen Beziehungen, welche zu- 15'. g = gA, B = (A B 0) (A B1 0) (A1 B 0) = aA, B = a 16'. gA, B1 = (A B 0) (A B1 0) (A1 B1 0) = aA, B1 17'. gA1, B = (A B 0) (A1 B 0) (A1 B1 0) = aA1, B 18'. gA1, B1 = (A B1 0) (A1 B 0) (A1 B1 0) = aA1, B1 Verneinungen derselben. 151'. g1 = g1A, B = (A1 + B1 = 1) + (A1 + B = 1) + (A + B1 = 1) = a1A, B = a1 161'. g1A, B1 = (A1 + B1 = 1) + (A1 + B = 1) + (A + B = 1) = a1A, B1 171'. g1A1, B = (A1 + B1 = 1) + (A + B1 = 1) + (A + B = 1) = a1A1, B 181'. g1A1, B1 = (A1 + B = 1) + (A + B1 = 1) + (A + B = 1) = a1A1, B1 Die Beziehungen, welche nur Elementarbeziehungen sind. 19'. b = bA, B = (A + B1 = 1) (A B 0) (A B1 0) 20'. bA, B1 = (A + B = 1) (A B 0) (A B1 0) Dreiundzwanzigste Vorlesung. 81’. e1A, B1 = f1A1, B = (A1 + B1 = 1) + (A1 B1 ≠ 0) 91’. f1A, B1 = e1A1, B = (A + B = 1) + (A B ≠ 0) 101’. f1 = f1A, B = e1A1, B1 = (A + B1 = 1) + (A B1 ≠ 0). Beziehungen, welche zugleich Grund-, Elementar- und 11’. a = aA, B = cA, B1 = bA1, B = lA1, B1 = (A1 + B1 = 1) 12’. c = cA, B = aA, B1 = bA1, B1 = lA1, B = (A1 + B = 1) 13’. b = bA, B = aA1, B = cA1, B1 = lA, B1 = (A + B1 = 1) 14’. l = lA, B = aA1, B1 = cA1, B = bA, B1 = (A + B = 1) Negationen derselben. 111’. a1 = a1A, B = c1A, B1 = b1A1, B = l1A1, B1 = (A B ≠ 0) 121’. c1 = c1A, B = a1A, B1 = b1A1, B1 = l1A1, B = (A B1 ≠ 0) 131’. b1 = b1A, B = a1A1, B = c1A1, B1 = l1A, B1 = (A1 B ≠ 0) 141’. l1 = l1A, B = a1A1, B1 = c1A1, B = b1A, B1 = (A1 B1 ≠ 0) (Nicht-primitive, resp.) Die übrigen Beziehungen, welche zu- 15’. g = gA, B = (A B ≠ 0) (A B1 ≠ 0) (A1 B ≠ 0) = αA, B = α 16’. gA, B1 = (A B ≠ 0) (A B1 ≠ 0) (A1 B1 ≠ 0) = αA, B1 17’. gA1, B = (A B ≠ 0) (A1 B ≠ 0) (A1 B1 ≠ 0) = αA1, B 18’. gA1, B1 = (A B1 ≠ 0) (A1 B ≠ 0) (A1 B1 ≠ 0) = αA1, B1 Verneinungen derselben. 151’. g1 = g1A, B = (A1 + B1 = 1) + (A1 + B = 1) + (A + B1 = 1) = α1A, B = α1 161’. g1A, B1 = (A1 + B1 = 1) + (A1 + B = 1) + (A + B = 1) = α1A, B1 171’. g1A1, B = (A1 + B1 = 1) + (A + B1 = 1) + (A + B = 1) = α1A1, B 181’. g1A1, B1 = (A1 + B = 1) + (A + B1 = 1) + (A + B = 1) = α1A1, B1 Die Beziehungen, welche nur Elementarbeziehungen sind. 19’. β = βA, B = (A + B1 = 1) (A B ≠ 0) (A B1 ≠ 0) 20’. βA, B1 = (A + B = 1) (A B ≠ 0) (A B1 ≠ 0) <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <pb facs="#f0376" n="352"/> <fw place="top" type="header">Dreiundzwanzigste Vorlesung.</fw><lb/> <p>8<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">f</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>9<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">f</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A B</hi> ≠ 0)</hi></p><lb/> <p>10<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">f</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0).</hi></p><lb/> <p> <hi rendition="#c"><hi rendition="#g">Beziehungen</hi>, <hi rendition="#g">welche zugleich Grund-</hi>, <hi rendition="#g">Elementar- und<lb/> primitive Beziehungen sind</hi> (zusammen mit ihren Negationen die<lb/> 8 Beziehungen <hi rendition="#g">De Morgan’</hi>s).</hi> </p><lb/> <p>11’. <hi rendition="#et"><hi rendition="#i">a</hi> = <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1)</hi></p><lb/> <p>12’. <hi rendition="#et"><hi rendition="#i">c</hi> = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1)</hi></p><lb/> <p>13’. <hi rendition="#et"><hi rendition="#i">b</hi> = <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1)</hi></p><lb/> <p>14’. <hi rendition="#et"><hi rendition="#i">l</hi> = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1)</hi></p><lb/> <p> <hi rendition="#c"><hi rendition="#g">Negationen derselben</hi>.</hi> </p><lb/> <p>11<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A B</hi> ≠ 0)</hi></p><lb/> <p>12<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>13<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">b</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0)</hi></p><lb/> <p>14<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">l</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p> <hi rendition="#c">(Nicht-primitive, resp.) <hi rendition="#g">Die übrigen Beziehungen</hi>, <hi rendition="#g">welche zu-<lb/> gleich Grund- und Elementarbeziehungen sind</hi>.</hi> </p><lb/> <p>15’. <hi rendition="#et"><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) = <hi rendition="#i">α</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">α</hi></hi></p><lb/> <p>16’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0) = <hi rendition="#i">α</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi></hi></p><lb/> <p>17’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0) = <hi rendition="#i">α</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi></hi></p><lb/> <p>18’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0) = <hi rendition="#i">α</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi></hi></p><lb/> <p> <hi rendition="#c"><hi rendition="#g">Verneinungen derselben</hi>.</hi> </p><lb/> <p>15<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">g</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) = <hi rendition="#i">α</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = <hi rendition="#i">α</hi><hi rendition="#sub">1</hi></hi></p><lb/> <p>16<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) = <hi rendition="#i">α</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi></hi></p><lb/> <p>17<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) = <hi rendition="#i">α</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi></hi></hi></p><lb/> <p>18<hi rendition="#sub">1</hi>’. <hi rendition="#et"><hi rendition="#i">g</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) + (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) = <hi rendition="#i">α</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi></hi></p><lb/> <p> <hi rendition="#c"><hi rendition="#g">Die Beziehungen</hi>, <hi rendition="#g">welche nur Elementarbeziehungen sind</hi>.</hi> </p><lb/> <p>19’. <hi rendition="#et"><hi rendition="#i">β</hi> = <hi rendition="#i">β</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> <p>20’. <hi rendition="#et"><hi rendition="#i">β</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">B</hi><hi rendition="#sub">1</hi></hi> = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">A B</hi> ≠ 0) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0)</hi></p><lb/> </div> </div> </div> </body> </text> </TEI> [352/0376]
Dreiundzwanzigste Vorlesung.
81’. e1A, B1 = f1A1, B = (A1 + B1 = 1) + (A1 B1 ≠ 0)
91’. f1A, B1 = e1A1, B = (A + B = 1) + (A B ≠ 0)
101’. f1 = f1A, B = e1A1, B1 = (A + B1 = 1) + (A B1 ≠ 0).
Beziehungen, welche zugleich Grund-, Elementar- und
primitive Beziehungen sind (zusammen mit ihren Negationen die
8 Beziehungen De Morgan’s).
11’. a = aA, B = cA, B1 = bA1, B = lA1, B1 = (A1 + B1 = 1)
12’. c = cA, B = aA, B1 = bA1, B1 = lA1, B = (A1 + B = 1)
13’. b = bA, B = aA1, B = cA1, B1 = lA, B1 = (A + B1 = 1)
14’. l = lA, B = aA1, B1 = cA1, B = bA, B1 = (A + B = 1)
Negationen derselben.
111’. a1 = a1A, B = c1A, B1 = b1A1, B = l1A1, B1 = (A B ≠ 0)
121’. c1 = c1A, B = a1A, B1 = b1A1, B1 = l1A1, B = (A B1 ≠ 0)
131’. b1 = b1A, B = a1A1, B = c1A1, B1 = l1A, B1 = (A1 B ≠ 0)
141’. l1 = l1A, B = a1A1, B1 = c1A1, B = b1A, B1 = (A1 B1 ≠ 0)
(Nicht-primitive, resp.) Die übrigen Beziehungen, welche zu-
gleich Grund- und Elementarbeziehungen sind.
15’. g = gA, B = (A B ≠ 0) (A B1 ≠ 0) (A1 B ≠ 0) = αA, B = α
16’. gA, B1 = (A B ≠ 0) (A B1 ≠ 0) (A1 B1 ≠ 0) = αA, B1
17’. gA1, B = (A B ≠ 0) (A1 B ≠ 0) (A1 B1 ≠ 0) = αA1, B
18’. gA1, B1 = (A B1 ≠ 0) (A1 B ≠ 0) (A1 B1 ≠ 0) = αA1, B1
Verneinungen derselben.
151’. g1 = g1A, B = (A1 + B1 = 1) + (A1 + B = 1) + (A + B1 = 1) = α1A, B = α1
161’. g1A, B1 = (A1 + B1 = 1) + (A1 + B = 1) + (A + B = 1) = α1A, B1
171’. g1A1, B = (A1 + B1 = 1) + (A + B1 = 1) + (A + B = 1) = α1A1, B
181’. g1A1, B1 = (A1 + B = 1) + (A + B1 = 1) + (A + B = 1) = α1A1, B1
Die Beziehungen, welche nur Elementarbeziehungen sind.
19’. β = βA, B = (A + B1 = 1) (A B ≠ 0) (A B1 ≠ 0)
20’. βA, B1 = (A + B = 1) (A B ≠ 0) (A B1 ≠ 0)
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/schroeder_logik0201_1891 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/schroeder_logik0201_1891/376 |
Zitationshilfe: | Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891, S. 352. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/schroeder_logik0201_1891/376>, abgerufen am 18.02.2025. |