Planck, Max: Vorlesungen über Thermodynamik. Leipzig: Veit & C., 1897.System von beliebig vielen unabhängigen Bestandtheilen. einsetzt. Die weiteren Folgerungen aus (187) schliessen sichganz den oben für eine freie Berührungsfläche abgeleiteten an. Zunächst haben wir, entsprechend der Gleichung (163), für irgend eine Verschiebung des Gleichgewichts: [Formel 1] und weiter, unter Berücksichtigung des Umstandes, dass der Bestandtheil 2 nur in der ersten Phase vorkommt, anstatt der Gleichung (175) die folgende: [Formel 2] . (188) Hier ist, wie in § 221, r die "Austrittswärme" des Lösungs- mittels aus der Lösung, d. h. die Wärmemenge, welche von Aussen zuzuführen ist, wenn bei constanter Temperatur th und bei constanten Drucken p' und p" die Masseneinheit des Lösungs- mittels aus einer grossen Quantität der Lösung durch die semi- permeable Wand in das reine Lösungsmittel übergeht. Ferner ist s' die bei demselben Vorgang eintretende Volumenänderung der Lösung (negativ), s" diejenige des angrenzenden Lösungs- mittels (positiv). In der Gleichgewichtsbedingung (188) sind also von den vier Variabeln th, p', p", c drei willkührlich und erst die vierte dadurch bestimmt. Nehmen wir zunächst den Druck p" im reinen Lösungs- Man bezeichnet die Differenz der Drucke in beiden Phasen: Planck, Thermodynamik. 13
System von beliebig vielen unabhängigen Bestandtheilen. einsetzt. Die weiteren Folgerungen aus (187) schliessen sichganz den oben für eine freie Berührungsfläche abgeleiteten an. Zunächst haben wir, entsprechend der Gleichung (163), für irgend eine Verschiebung des Gleichgewichts: [Formel 1] und weiter, unter Berücksichtigung des Umstandes, dass der Bestandtheil 2 nur in der ersten Phase vorkommt, anstatt der Gleichung (175) die folgende: [Formel 2] . (188) Hier ist, wie in § 221, r die „Austrittswärme“ des Lösungs- mittels aus der Lösung, d. h. die Wärmemenge, welche von Aussen zuzuführen ist, wenn bei constanter Temperatur ϑ und bei constanten Drucken p' und p″ die Masseneinheit des Lösungs- mittels aus einer grossen Quantität der Lösung durch die semi- permeable Wand in das reine Lösungsmittel übergeht. Ferner ist s' die bei demselben Vorgang eintretende Volumenänderung der Lösung (negativ), s″ diejenige des angrenzenden Lösungs- mittels (positiv). In der Gleichgewichtsbedingung (188) sind also von den vier Variabeln ϑ, p', p″, c drei willkührlich und erst die vierte dadurch bestimmt. Nehmen wir zunächst den Druck p″ im reinen Lösungs- Man bezeichnet die Differenz der Drucke in beiden Phasen: Planck, Thermodynamik. 13
<TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0209" n="193"/><fw place="top" type="header"><hi rendition="#i">System von beliebig vielen unabhängigen Bestandtheilen</hi>.</fw><lb/> einsetzt. Die weiteren Folgerungen aus (187) schliessen sich<lb/> ganz den oben für eine freie Berührungsfläche abgeleiteten an.<lb/> Zunächst haben wir, entsprechend der Gleichung (163), für irgend<lb/> eine Verschiebung des Gleichgewichts:<lb/><hi rendition="#c"><formula/></hi> und weiter, unter Berücksichtigung des Umstandes, dass der<lb/> Bestandtheil 2 nur in der ersten Phase vorkommt, anstatt der<lb/> Gleichung (175) die folgende:<lb/><hi rendition="#et"><formula/>. (188)</hi><lb/> Hier ist, wie in § 221, <hi rendition="#i">r</hi> die „Austrittswärme“ des Lösungs-<lb/> mittels aus der Lösung, d. h. die Wärmemenge, welche von<lb/> Aussen zuzuführen ist, wenn bei constanter Temperatur <hi rendition="#i">ϑ</hi> und<lb/> bei constanten Drucken <hi rendition="#i">p'</hi> und <hi rendition="#i">p</hi>″ die Masseneinheit des Lösungs-<lb/> mittels aus einer grossen Quantität der Lösung durch die semi-<lb/> permeable Wand in das reine Lösungsmittel übergeht. Ferner<lb/> ist <hi rendition="#i">s'</hi> die bei demselben Vorgang eintretende Volumenänderung<lb/> der Lösung (negativ), <hi rendition="#i">s</hi>″ diejenige des angrenzenden Lösungs-<lb/> mittels (positiv). In der Gleichgewichtsbedingung (188) sind also<lb/> von den vier Variabeln <hi rendition="#i">ϑ, p', p″, c</hi> drei willkührlich und erst<lb/> die vierte dadurch bestimmt.</p><lb/> <p>Nehmen wir zunächst den Druck <hi rendition="#i">p</hi>″ im reinen Lösungs-<lb/> mittel als gegeben und unveränderlich an, etwa als den Druck<lb/> einer Atmosphäre, so haben wir <hi rendition="#i">d p</hi>″ = 0. Setzen wir ferner<lb/><hi rendition="#i">d ϑ</hi> = 0 und <hi rendition="#i">d c</hi> von Null verschieden, d. h. betrachten wir<lb/> Lösungen verschiedener Concentration bei der nämlichen Tempe-<lb/> ratur und bei dem nämlichen Druck im angrenzenden reinen<lb/> Lösungsmittel, so ergibt sich aus (188):<lb/><hi rendition="#c"><formula/>.</hi><lb/> Da nun <hi rendition="#i">φ</hi> > 0 und <hi rendition="#i">s'</hi> < 0, so wächst mit steigender Concentration<lb/><hi rendition="#i">c</hi> der Druck <hi rendition="#i">p'</hi> im Innern der Lösung.</p><lb/> <p>Man bezeichnet die Differenz der Drucke in beiden Phasen:<lb/><hi rendition="#c"><hi rendition="#i">p'</hi> — <hi rendition="#i">p</hi>″ = <hi rendition="#i">P</hi></hi><lb/> als den „osmotischen Druck“ der Lösung. Da nun <hi rendition="#i">p</hi>″ oben als<lb/> constant angenommen ist, lässt sich schreiben:<lb/> <fw place="bottom" type="sig"><hi rendition="#k">Planck</hi>, Thermodynamik. 13</fw><lb/></p> </div> </div> </body> </text> </TEI> [193/0209]
System von beliebig vielen unabhängigen Bestandtheilen.
einsetzt. Die weiteren Folgerungen aus (187) schliessen sich
ganz den oben für eine freie Berührungsfläche abgeleiteten an.
Zunächst haben wir, entsprechend der Gleichung (163), für irgend
eine Verschiebung des Gleichgewichts:
[FORMEL] und weiter, unter Berücksichtigung des Umstandes, dass der
Bestandtheil 2 nur in der ersten Phase vorkommt, anstatt der
Gleichung (175) die folgende:
[FORMEL]. (188)
Hier ist, wie in § 221, r die „Austrittswärme“ des Lösungs-
mittels aus der Lösung, d. h. die Wärmemenge, welche von
Aussen zuzuführen ist, wenn bei constanter Temperatur ϑ und
bei constanten Drucken p' und p″ die Masseneinheit des Lösungs-
mittels aus einer grossen Quantität der Lösung durch die semi-
permeable Wand in das reine Lösungsmittel übergeht. Ferner
ist s' die bei demselben Vorgang eintretende Volumenänderung
der Lösung (negativ), s″ diejenige des angrenzenden Lösungs-
mittels (positiv). In der Gleichgewichtsbedingung (188) sind also
von den vier Variabeln ϑ, p', p″, c drei willkührlich und erst
die vierte dadurch bestimmt.
Nehmen wir zunächst den Druck p″ im reinen Lösungs-
mittel als gegeben und unveränderlich an, etwa als den Druck
einer Atmosphäre, so haben wir d p″ = 0. Setzen wir ferner
d ϑ = 0 und d c von Null verschieden, d. h. betrachten wir
Lösungen verschiedener Concentration bei der nämlichen Tempe-
ratur und bei dem nämlichen Druck im angrenzenden reinen
Lösungsmittel, so ergibt sich aus (188):
[FORMEL].
Da nun φ > 0 und s' < 0, so wächst mit steigender Concentration
c der Druck p' im Innern der Lösung.
Man bezeichnet die Differenz der Drucke in beiden Phasen:
p' — p″ = P
als den „osmotischen Druck“ der Lösung. Da nun p″ oben als
constant angenommen ist, lässt sich schreiben:
Planck, Thermodynamik. 13
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |