Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.der Algebra. AB : BF = AD : DH Derowegen ist CH = 3c3 - b2c, : r2 - 2c Derowegen ist DI = 4c4 - 4b2c2, : r3 -- Wenn demnach der Sinus totus r/ der Hingegen der Sinus Complementi Zu-
der Algebra. AB : BF = AD : DH Derowegen iſt CH = 3c3 ‒ b2c, : r2 ‒ 2c Derowegen iſt DI = 4c4 ‒ 4b2c2, : r3 — Wenn demnach der Sinus totus r/ der Hingegen der Sinus Complementi Zu-
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <div n="4"> <pb facs="#f0111" n="109"/> <fw place="top" type="header"> <hi rendition="#b">der Algebra.</hi> </fw><lb/> <p> <hi rendition="#et"> <hi rendition="#aq">AB : BF = AD : DH<lb/><hi rendition="#i">r _ _ b</hi> _ _ (3<hi rendition="#i">c</hi><hi rendition="#sup">2</hi>-<hi rendition="#i">b</hi><hi rendition="#sup">2</hi>):<hi rendition="#i">r</hi> _ _ 3<hi rendition="#i">bc</hi><hi rendition="#sup">2</hi>-<hi rendition="#i">b</hi><hi rendition="#sup">3</hi>, : <hi rendition="#i">r</hi><hi rendition="#sup">2</hi><lb/> AB : AF = AD : AH<lb/><hi rendition="#i">r _ _ c</hi> _ _ 3<hi rendition="#i">c</hi><hi rendition="#sup">2</hi>-<hi rendition="#i">b</hi><hi rendition="#sup">2</hi>,:<hi rendition="#i">r</hi> 3<hi rendition="#i">c</hi><hi rendition="#sup">3</hi> ‒ <hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi>, : <hi rendition="#i">r</hi><hi rendition="#sup">2</hi></hi> </hi> </p><lb/> <p>Derowegen iſt <hi rendition="#aq">CH = 3<hi rendition="#i">c</hi><hi rendition="#sup">3</hi> ‒ <hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi>, : <hi rendition="#i">r</hi><hi rendition="#sup">2</hi> ‒ 2<hi rendition="#i">c</hi><lb/> = 3<hi rendition="#i">c</hi><hi rendition="#sup">3</hi> — <hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi> — 2<hi rendition="#i">cr</hi><hi rendition="#sup">2</hi>,: <hi rendition="#i">r</hi><hi rendition="#sup">2</hi></hi> = (weil <hi rendition="#aq"><hi rendition="#i">r</hi><hi rendition="#sup">2</hi> =<lb/><hi rendition="#i">c</hi><hi rendition="#sup">2</hi> — <hi rendition="#i">b</hi><hi rendition="#sup">2</hi>) 3<hi rendition="#i">c</hi><hi rendition="#sup">3</hi> — <hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi> — 2<hi rendition="#i">c</hi><hi rendition="#sup">3</hi> — 2<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi>, : <hi rendition="#i">r</hi><hi rendition="#sup">2</hi> =<lb/><hi rendition="#i">c</hi><hi rendition="#sup">3</hi> — 3<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c,:r</hi><hi rendition="#sup">2</hi>/</hi> folgends <hi rendition="#aq">AE = 3<hi rendition="#i">c</hi><hi rendition="#sup">3</hi> ‒ <hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c,:<lb/> r</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">c</hi><hi rendition="#sup">3</hi> — 3<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi> : <hi rendition="#i">r</hi><hi rendition="#sup">2</hi> = 4<hi rendition="#i">c</hi><hi rendition="#sup">3</hi> — 4<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c,: r</hi><hi rendition="#sup">2</hi>.<lb/><hi rendition="#et">AB : BF = AE : EI<lb/><hi rendition="#i">r _ _ b</hi> _ _ 4<hi rendition="#i">c</hi><hi rendition="#sup">3</hi> ‒ 4<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c,:r</hi><hi rendition="#sup">2</hi> 4<hi rendition="#i">bc</hi><hi rendition="#sup">3</hi>-4<hi rendition="#i">b</hi><hi rendition="#sup">3</hi><hi rendition="#i">c,:r</hi><hi rendition="#sup">3</hi><lb/> AB : AF = AE : AI<lb/><hi rendition="#i">r _ _ c</hi> _ _ 4<hi rendition="#i">c</hi><hi rendition="#sup">3</hi>-4<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi>, : <hi rendition="#i">r</hi><hi rendition="#sup">2</hi> 4<hi rendition="#i">c</hi><hi rendition="#sup">4</hi>-4<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi><hi rendition="#sup">2</hi>,:<hi rendition="#i">r</hi><hi rendition="#sup">3</hi></hi></hi></p><lb/> <p>Derowegen iſt <hi rendition="#aq">DI = 4<hi rendition="#i">c</hi><hi rendition="#sup">4</hi> ‒ 4<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi><hi rendition="#sup">2</hi>, : <hi rendition="#i">r</hi><hi rendition="#sup">3</hi> —<lb/> 3<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">b</hi><hi rendition="#sup">2</hi>, : <hi rendition="#i">r</hi> = 4<hi rendition="#i">c</hi><hi rendition="#sup">4</hi> ‒ 4<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi><hi rendition="#sup">2</hi> ‒ 3<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> ‒ 3<hi rendition="#i">c</hi><hi rendition="#sup">2</hi><hi rendition="#i">r</hi><hi rendition="#sup">2</hi> +<lb/><hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">r</hi><hi rendition="#sup">2</hi>,:<hi rendition="#i">r</hi><hi rendition="#sup">3</hi> = 4<hi rendition="#i">c</hi><hi rendition="#sup">4</hi> ‒ 4<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi><hi rendition="#sup">2</hi> ‒ 3<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi><hi rendition="#sup">2</hi> ‒ 3<hi rendition="#i">c</hi><hi rendition="#sup">4</hi> + <hi rendition="#i">b</hi><hi rendition="#sup">4</hi><lb/> + <hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi><hi rendition="#sup">2</hi>,: <hi rendition="#i">r</hi><hi rendition="#sup">3</hi> = <hi rendition="#i">c</hi><hi rendition="#sup">4</hi> ‒ 6<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">b</hi><hi rendition="#sup">4</hi>, : <hi rendition="#i">r</hi><hi rendition="#sup">3</hi>.</hi></p><lb/> <p>Wenn demnach der <hi rendition="#aq">Sinus totus <hi rendition="#i">r/</hi></hi> der<lb/><hi rendition="#aq">Sinus</hi> des einfachen Weinckels <hi rendition="#i">b/</hi> und ſein<lb/><hi rendition="#aq">Sinus complementi <hi rendition="#i">c</hi></hi> iſt/ ſo iſt der <hi rendition="#aq">Sinus</hi><lb/><hi rendition="#et">des zwiefachen 2<hi rendition="#aq"><hi rendition="#i">bc : r</hi></hi><lb/> des dreyfachen 3<hi rendition="#aq"><hi rendition="#i">b c</hi><hi rendition="#sup">2</hi> ‒ <hi rendition="#i">b</hi><hi rendition="#sup">3</hi>,: <hi rendition="#i">r</hi><hi rendition="#sup">2</hi></hi><lb/> des vierfachen 4<hi rendition="#aq"><hi rendition="#i">bc</hi> ‒ 4<hi rendition="#i">b</hi><hi rendition="#sup">3</hi><hi rendition="#i">c</hi>,: <hi rendition="#i">r</hi><hi rendition="#sup">3</hi></hi><lb/> des fuͤnffachen 5<hi rendition="#aq"><hi rendition="#i">bc</hi><hi rendition="#sup">4</hi>-18<hi rendition="#i">b</hi><hi rendition="#sup">3</hi><hi rendition="#i">c</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">b</hi><hi rendition="#sup">5</hi>,: <hi rendition="#i">r</hi><hi rendition="#sup">4</hi></hi><lb/> des ſechsfachen 6<hi rendition="#aq"><hi rendition="#i">bc</hi><hi rendition="#sup">5</hi> ‒ 20<hi rendition="#i">b</hi><hi rendition="#sup">3</hi><hi rendition="#i">c</hi><hi rendition="#sup">3</hi> + 6<hi rendition="#i">b</hi><hi rendition="#sup">5</hi><hi rendition="#i">c,: r<hi rendition="#sup">5</hi></hi></hi></hi></p><lb/> <p>Hingegen der <hi rendition="#aq">Sinus Complementi</hi><lb/> des zwiefachen <hi rendition="#aq"><hi rendition="#i">cc ‒ bb, : r</hi></hi><lb/> des dreyfachen <hi rendition="#aq"><hi rendition="#i">c</hi><hi rendition="#sup">3</hi> ‒ 3<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c, : r</hi><hi rendition="#sup">2</hi></hi><lb/> des vierfachen <hi rendition="#aq"><hi rendition="#i">c</hi><hi rendition="#sup">4</hi> ‒ 6<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">b</hi><hi rendition="#sup">4</hi>,: <hi rendition="#i">r</hi><hi rendition="#sup">3</hi></hi><lb/> des fuͤnffaͤchen <hi rendition="#aq"><hi rendition="#i">c</hi><hi rendition="#sup">5</hi> ‒ 10<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi><hi rendition="#sup">3</hi> + 5<hi rendition="#i">b</hi><hi rendition="#sup">4</hi><hi rendition="#i">c,: r</hi><hi rendition="#sup">4</hi></hi><lb/> des ſechsfachen <hi rendition="#aq"><hi rendition="#i">c</hi><hi rendition="#sup">6</hi> ‒ 15<hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi> + 15<hi rendition="#i">b</hi><hi rendition="#sup">4</hi> <hi rendition="#i">c</hi><hi rendition="#sup">2</hi> ‒ <hi rendition="#i">b</hi><hi rendition="#sup">6</hi>,: <hi rendition="#i">r</hi><hi rendition="#sup">5</hi></hi></p> </div><lb/> <fw place="bottom" type="catch">Zu-</fw><lb/> </div> </div> </div> </body> </text> </TEI> [109/0111]
der Algebra.
AB : BF = AD : DH
r _ _ b _ _ (3c2-b2):r _ _ 3bc2-b3, : r2
AB : AF = AD : AH
r _ _ c _ _ 3c2-b2,:r 3c3 ‒ b2c, : r2
Derowegen iſt CH = 3c3 ‒ b2c, : r2 ‒ 2c
= 3c3 — b2c — 2cr2,: r2 = (weil r2 =
c2 — b2) 3c3 — b2c — 2c3 — 2b2c, : r2 =
c3 — 3b2c,:r2/ folgends AE = 3c3 ‒ b2c,:
r2 + c3 — 3b2c : r2 = 4c3 — 4b2c,: r2.
AB : BF = AE : EI
r _ _ b _ _ 4c3 ‒ 4b2c,:r2 4bc3-4b3c,:r3
AB : AF = AE : AI
r _ _ c _ _ 4c3-4b2c, : r2 4c4-4b2c2,:r3
Derowegen iſt DI = 4c4 ‒ 4b2c2, : r3 —
3c2 + b2, : r = 4c4 ‒ 4b2c2 ‒ 3c2 ‒ 3c2r2 +
b2r2,:r3 = 4c4 ‒ 4b2c2 ‒ 3b2c2 ‒ 3c4 + b4
+ b2c2,: r3 = c4 ‒ 6b2c2 + b4, : r3.
Wenn demnach der Sinus totus r/ der
Sinus des einfachen Weinckels b/ und ſein
Sinus complementi c iſt/ ſo iſt der Sinus
des zwiefachen 2bc : r
des dreyfachen 3b c2 ‒ b3,: r2
des vierfachen 4bc ‒ 4b3c,: r3
des fuͤnffachen 5bc4-18b3 c2 + b5,: r4
des ſechsfachen 6bc5 ‒ 20b3c3 + 6b5c,: r5
Hingegen der Sinus Complementi
des zwiefachen cc ‒ bb, : r
des dreyfachen c3 ‒ 3b2c, : r2
des vierfachen c4 ‒ 6b2c2 + b4,: r3
des fuͤnffaͤchen c5 ‒ 10b2c3 + 5b4c,: r4
des ſechsfachen c6 ‒ 15b2c + 15b4 c2 ‒ b6,: r5
Zu-
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/111 |
Zitationshilfe: | Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710. , S. 109. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/111>, abgerufen am 16.02.2025. |