Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.§ 46. Studien über Theoreme von Peirce. o) (e f) {(a e) + (c e 0)} 0-- indem wegen e f auch e f = e sein wird, resp. p) (a e) + (c e 0) 0. Die Ergebnisse n), o), sodann x), p) lehren in Worten: Entweder während der ganzen Stunde ist a ganz in e enthalten, Oder während eines Teils der Stunde ("manchmal") ist e ganz in Beziehungsweise: Immer ist a in e enthalten oder c bedeckt die Tafel oder ragt in e Da (A = i) (A 0), so wird man in x) den ersten und dritten Entweder c bedeckt stets die ganze Tafel oder manchmal ist a 8. Studie. In 5 p. 34 u. 35 gibt Peirce in der Formelsprache des Aussagen- Herrn Peirce's Theoreme lauten:
p, q welche die unter das Summenzeichen gesetzte Gleichung erfüllen. Noch besser, vielleicht, wird man die Theoreme so schreiben:
denkbaren Gebietepaare p, q. Dass dieses auf das vorige hinauskommt, wird klar, wenn man § 46. Studien über Theoreme von Peirce. ο) (e ⊆ f) {(a ⊆ e) + (c e ≠ 0)} ≠ 0— indem wegen e ⊆ f auch e f = e sein wird, resp. π) (a ⊆ e) + (c e ≠ 0) ≠ 0. Die Ergebnisse ν), ο), sodann ξ), π) lehren in Worten: Entweder während der ganzen Stunde ist a ganz in e enthalten, Oder während eines Teils der Stunde („manchmal“) ist e ganz in Beziehungsweise: Immer ist a in e enthalten oder c bedeckt die Tafel oder ragt in e Da (A = i) ⊆ (A ≠ 0), so wird man in ξ) den ersten und dritten Entweder c bedeckt stets die ganze Tafel oder manchmal ist a 8. Studie. In 5 p. 34 u. 35 gibt Peirce in der Formelsprache des Aussagen- Herrn Peirce’s Theoreme lauten:
p, q welche die unter das Summenzeichen gesetzte Gleichung erfüllen. Noch besser, vielleicht, wird man die Theoreme so schreiben:
denkbaren Gebietepaare p, q. Dass dieses auf das vorige hinauskommt, wird klar, wenn man <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0321" n="297"/><fw place="top" type="header">§ 46. Studien über Theoreme von Peirce.</fw><lb/><hi rendition="#i">ο</hi>) <hi rendition="#et">(<hi rendition="#i">e</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">f</hi>) {(<hi rendition="#i">a</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">e</hi>) + (<hi rendition="#i">c e</hi> ≠ 0)} ≠ 0</hi><lb/> — indem wegen <hi rendition="#i">e</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">f</hi> auch <hi rendition="#i">e f</hi> = <hi rendition="#i">e</hi> sein wird, resp.<lb/><hi rendition="#i">π</hi>) <hi rendition="#et">(<hi rendition="#i">a</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">e</hi>) + (<hi rendition="#i">c e</hi> ≠ 0) ≠ 0.</hi></p><lb/> <p>Die Ergebnisse <hi rendition="#i">ν</hi>), <hi rendition="#i">ο</hi>), sodann <hi rendition="#i">ξ</hi>), <hi rendition="#i">π</hi>) lehren in Worten:</p><lb/> <p><hi rendition="#i">Entweder</hi> während der ganzen Stunde ist <hi rendition="#i">a</hi> ganz in <hi rendition="#i">e</hi> enthalten,<lb/> oder <hi rendition="#i">c</hi> bedeckt die ganze Tafel während <hi rendition="#i">a</hi> von <hi rendition="#i">e</hi> nebst <hi rendition="#i">f</hi> überdeckt<lb/> wird, oder <hi rendition="#i">c</hi> und <hi rendition="#i">e</hi> haben einen Teil gemein,</p><lb/> <p><hi rendition="#i">Oder</hi> während eines Teils der Stunde („manchmal“) ist <hi rendition="#i">e</hi> ganz in<lb/><hi rendition="#i">f</hi> eingeschlossen, während (entweder) <hi rendition="#i">a</hi> in <hi rendition="#i">e</hi> eingeschlossen erscheint,<lb/> oder <hi rendition="#i">c</hi> und <hi rendition="#i">e</hi> in einander greifen.</p><lb/> <p>Beziehungsweise:</p><lb/> <p>Immer ist <hi rendition="#i">a</hi> in <hi rendition="#i">e</hi> enthalten oder <hi rendition="#i">c</hi> bedeckt die Tafel oder ragt in <hi rendition="#i">e</hi><lb/> hinein, <hi rendition="#i">oder</hi> (nur) manchmal ist <hi rendition="#i">a</hi> in <hi rendition="#i">e</hi> enthalten oder ragt <hi rendition="#i">c</hi> in <hi rendition="#i">e</hi> hinein.</p><lb/> <p>Da (<hi rendition="#i">A</hi> = i) <choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">A</hi> ≠ 0), so wird man in <hi rendition="#i">ξ</hi>) den ersten und dritten<lb/> Term gegen die beiden in <hi rendition="#i">π</hi>) weglassen können, und kann letzteres Resul-<lb/> tat einfacher darstellen durch:</p><lb/> <p>Entweder <hi rendition="#i">c</hi> bedeckt stets die ganze Tafel oder manchmal ist <hi rendition="#i">a</hi><lb/> in <hi rendition="#i">e</hi> enthalten oder ragt <hi rendition="#i">c</hi> in <hi rendition="#i">e</hi> hinein.</p><lb/> <p>8. Studie.</p><lb/> <p>In <hi rendition="#sup">5</hi> p. 34 u. 35 gibt <hi rendition="#g">Peirce</hi> in der Formelsprache des Aussagen-<lb/> kalkuls ein paar Theoreme des Gebietekalkuls, denen ich in nächster<lb/> Nummer ein paar analoge zugesellen werde. Für alle viere, die von<lb/> eigentümlicher Beschaffenheit sind, vermag ich aber keine Gelegenheit<lb/> für ihre Anwendung oder etwaige Verwertung abzusehn, sodass sie<lb/> hier nur als Kuriosa des identischen Kalkuls und Übungen im Aus-<lb/> sagenkalkul dargestellt und bewiesen werden sollen.</p><lb/> <p>Herrn <hi rendition="#g">Peirce’</hi>s Theoreme lauten:<lb/><table><row><cell><hi rendition="#i">ϱ</hi><hi rendition="#sub">×</hi>) (<hi rendition="#i">a b</hi><choice><orig></orig><reg>⊆</reg></choice><hi rendition="#i">c</hi>) = <formula/> (<hi rendition="#i">a</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">p</hi>) (<hi rendition="#i">b</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">q</hi>)</cell><cell><hi rendition="#i">ϱ</hi><hi rendition="#sub">+</hi>) (<hi rendition="#i">c</hi><choice><orig></orig><reg>⊆</reg></choice><hi rendition="#i">a</hi> + <hi rendition="#i">b</hi>) = <formula/> (<hi rendition="#i">p</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">a</hi>) (<hi rendition="#i">q</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">b</hi>)</cell></row><lb/></table> wo die Summe jeweils auszudehnen ist über alle möglichen Gebiete<lb/><hi rendition="#i">p</hi>, <hi rendition="#i">q</hi> welche die unter das Summenzeichen gesetzte Gleichung erfüllen.</p><lb/> <p>Noch besser, vielleicht, wird man die Theoreme so schreiben:<lb/><table><row><cell><hi rendition="#i">σ</hi> (<hi rendition="#i">a b</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">c</hi>) = <formula/> (<hi rendition="#i">p q</hi> = <hi rendition="#i">c</hi>) (<hi rendition="#i">a</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">p</hi>) (<hi rendition="#i">b</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">q</hi>)</cell><cell>(<hi rendition="#i">c</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">a</hi> + <hi rendition="#i">b</hi>) = <formula/> (<hi rendition="#i">p</hi> + <hi rendition="#i">q</hi> = <hi rendition="#i">c</hi>) (<hi rendition="#i">p</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">a</hi>) (<hi rendition="#i">q</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">b</hi>)</cell></row><lb/></table> wo die Summen auszudehnen sind, sich erstrecken sollen über alle<lb/> denkbaren Gebietepaare <hi rendition="#i">p</hi>, <hi rendition="#i">q</hi>.</p><lb/> <p>Dass dieses auf das vorige hinauskommt, wird klar, wenn man<lb/> — z. B. links vom Mittelstriche — bedenkt, dass für jedes Wertepaar<lb/><hi rendition="#i">p</hi>, <hi rendition="#i">q</hi>, für welches etwa <hi rendition="#i">p q</hi> ≠ <hi rendition="#i">c</hi> ist, der Faktor (<hi rendition="#i">p q</hi> = <hi rendition="#i">c</hi>) = 0 sein, mit-<lb/></p> </div> </div> </div> </body> </text> </TEI> [297/0321]
§ 46. Studien über Theoreme von Peirce.
ο) (e  f) {(a  e) + (c e ≠ 0)} ≠ 0
— indem wegen e  f auch e f = e sein wird, resp.
π) (a  e) + (c e ≠ 0) ≠ 0.
Die Ergebnisse ν), ο), sodann ξ), π) lehren in Worten:
Entweder während der ganzen Stunde ist a ganz in e enthalten,
oder c bedeckt die ganze Tafel während a von e nebst f überdeckt
wird, oder c und e haben einen Teil gemein,
Oder während eines Teils der Stunde („manchmal“) ist e ganz in
f eingeschlossen, während (entweder) a in e eingeschlossen erscheint,
oder c und e in einander greifen.
Beziehungsweise:
Immer ist a in e enthalten oder c bedeckt die Tafel oder ragt in e
hinein, oder (nur) manchmal ist a in e enthalten oder ragt c in e hinein.
Da (A = i)  (A ≠ 0), so wird man in ξ) den ersten und dritten
Term gegen die beiden in π) weglassen können, und kann letzteres Resul-
tat einfacher darstellen durch:
Entweder c bedeckt stets die ganze Tafel oder manchmal ist a
in e enthalten oder ragt c in e hinein.
8. Studie.
In 5 p. 34 u. 35 gibt Peirce in der Formelsprache des Aussagen-
kalkuls ein paar Theoreme des Gebietekalkuls, denen ich in nächster
Nummer ein paar analoge zugesellen werde. Für alle viere, die von
eigentümlicher Beschaffenheit sind, vermag ich aber keine Gelegenheit
für ihre Anwendung oder etwaige Verwertung abzusehn, sodass sie
hier nur als Kuriosa des identischen Kalkuls und Übungen im Aus-
sagenkalkul dargestellt und bewiesen werden sollen.
Herrn Peirce’s Theoreme lauten:
ϱ×) (a b  c) = [FORMEL] (a  p) (b  q) ϱ+) (c  a + b) = [FORMEL] (p  a) (q  b)
wo die Summe jeweils auszudehnen ist über alle möglichen Gebiete
p, q welche die unter das Summenzeichen gesetzte Gleichung erfüllen.
Noch besser, vielleicht, wird man die Theoreme so schreiben:
σ (a b  c) = [FORMEL] (p q = c) (a  p) (b  q) (c  a + b) = [FORMEL] (p + q = c) (p  a) (q  b)
wo die Summen auszudehnen sind, sich erstrecken sollen über alle
denkbaren Gebietepaare p, q.
Dass dieses auf das vorige hinauskommt, wird klar, wenn man
— z. B. links vom Mittelstriche — bedenkt, dass für jedes Wertepaar
p, q, für welches etwa p q ≠ c ist, der Faktor (p q = c) = 0 sein, mit-
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |