Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 6. Berlin, Wien, 1914.

Bild:
<< vorherige Seite

nicht einfach transformieren kann. Da nämlich die Verluste in einer Leitung bestimmten Querschnittes mit dem Quadrat der Stromstärke zunehmen, nicht aber von der Spannung abhängen, so muß man bestrebt sein, die Fortleitung einer verlangten Energiemenge bei tunlichst hoher Spannung zu bewirken, damit nach Formel (1) die Stromstärke entsprechend klein ausfällt. Spannungen über 500 Volt sind aber mit Gleichstrommaschinen nicht leicht zu erzeugen, andererseits wäre die direkte Verwendung höherer Spannungen in Elektromotoren lebensgefährlich.

Mit Wechselstrom dagegen ist eine einfache Umsetzung der Spannung in ruhenden Transformatoren möglich. Vor allen Dingen läßt sich der hochgespannte Wechselstrom an der Verbrauchsstelle durch Transformatoren ohne alle beweglichen Teile, die also auch keine Aufsicht brauchen, in solchen von niederer Spannung und entsprechend höherer Stromstärke unter Aufrechterhaltung der Leistung - Formel (1) - verwandeln, so daß jede Gefährdung der Benützer vermieden wird. Auch die unmittelbare Erzeugung hochgespannten Stromes ist bei Wechselstrom nicht schwierig. Doch kann man Wechselstrom auch mit niederer Spannung und großer Stromstärke erzeugen und ihn in solchen von hoher Spannung und niedriger Stromstärke umwandeln, der sich zur Fortleitung wirtschaftlich eignet.

Der Wechselstrom wird verwendet als einphasiger Wechselstrom (Wechselstrom im engeren Sinne) oder auch als Drehstrom, zu dessen Fortleitung drei Leiter erforderlich sind, zwischen denen sich drei einfache Wechselströme in eigenartigerweise übereinander legen. Der Drehstrom ist besonders geeignet für den Antrieb von elektrischen Motoren; diese werden für Drehstrom einfacher als für Gleichstrom. Der Bau von Motoren für einphasigen Wechselstrom bereitet noch immer Schwierigkeiten; gerade für Bahnbetriebe wird trotzdem einphasiger Wechselstrom mehrfach angewendet, weil er wie Gleichstrom nur einen Fahrdraht verlangt. Sonst aber ist Drehstrom die für die K. meist verwendete Stromart.

Die Leistungsberechnung nach Formel (1) bezieht sich (genau) nur auf Gleichstrom. Für Wechsel- und Drehstrom ist die Leistung kleiner als das Produkt der Spannung und Stromstärke, sobald die Maxima der Stromwechsel und die Maxima der Spannungswechsel nicht gleichzeitig stattfinden, sobald also eine Phasenverschiebung um einen Winkel ph stattfindet. Es ist dann
NWatt = JAmp x EVolt x cos ph     (2)
cos ph heißt der Leistungsfaktor. Bei Drehstrom ist bei gewissen Schaltungen die rechte Seite überdies noch mit sqrt3 zu multiplizieren, u. zw. wegen der Verwendung von drei Leitern.

Für die Fortleitung von Wechsel- und Drehstrom sind Spannungen von 10-20.000 Volt normal, doch sind schon Spannungen bis zu 100.000 Volt und mehr verwendet worden. Damit lassen sich Entfernungen von vielen hundert Kilometern wirtschaftlich überwinden. Je höher man die Spannung wählt, desto kleiner wird nach Formel (2) die Stromstärke, desto kleiner kann man also die Drahtdurchmesser halten; andererseits wachsen mit der Spannung die an die Isolierung zu stellenden Anforderungen. Wechselstrom wird für industrielle Zwecke in Europa meist mit 50 Perioden in der Sekunde verwendet, d. h. die Ströme und Spannungen in den Leitern wechseln 50mal sekundlich ihre Richtung. Auch Drehstrom hat meist 50 Perioden; die miteinander verketteten drei Wechselströme erzeugen dann ein Drehfeld, das 50mal sekundlich umläuft. Für elektrische Vollbahnen sind Periodenzahlen von 15 oder 162/3 üblich.

Neben der elektrischen treten die übrigen Formen der K. zurück und werden heute nur noch für Sonderfälle verwendet.

Bei der hydraulischen K. wird in der Zentrale Preßwasser unter einen Druck von 50 bis 250 Atm. gesetzt. Für die Fortleitung dienen Röhren aus Stahl mit besonderer Gummidichtung. Die übertragene Leistung in Pferdestärken ist gegeben durch das Produkt aus der Wassermenge, die übertragen wird, und der Spannung, bei der die Übertragung stattfindet. Es ist
NPS = Qcbm/sek x pAtm x 10000/75     (3)
Die Zahl 75 dient der Umrechnung von Meterkilogramm pro Sekunde in PS, die Zahl 10000 rührt her von der Umrechnung der Atmosphären in Kilogramm pro Quadratmeter (1 Atm. = 10.000 kg/m2). Auch bei Druckwasser wird die zur Übertragung einer bestimmten Leistung zu übertragende Wassermenge um so kleiner, je höher man den Druck wählt, um so enger werden alsdann die Rohrleitungen, allerdings auch um so starkwandiger.

Nachteile der Druckwasserübertragung gegenüber der elektrischen sind die Verwendung der umständlichen Rohrleitung gegenüber dem einfacheren elektrischen Kabel, die Möglichkeit des Einfrierens und die Unmöglichkeit wirtschaftlicher Regelung der mit Druckwasser betriebenen Maschinen. Auch ist mittels Druckwasser nur eine langsam hin- und hergehende Bewegung bequem zu erzeugen, schwieriger eine umlaufende, z. B. Brandtsche Gesteinsbohrmaschine. Die Verwendung der hydraulischen

nicht einfach transformieren kann. Da nämlich die Verluste in einer Leitung bestimmten Querschnittes mit dem Quadrat der Stromstärke zunehmen, nicht aber von der Spannung abhängen, so muß man bestrebt sein, die Fortleitung einer verlangten Energiemenge bei tunlichst hoher Spannung zu bewirken, damit nach Formel (1) die Stromstärke entsprechend klein ausfällt. Spannungen über 500 Volt sind aber mit Gleichstrommaschinen nicht leicht zu erzeugen, andererseits wäre die direkte Verwendung höherer Spannungen in Elektromotoren lebensgefährlich.

Mit Wechselstrom dagegen ist eine einfache Umsetzung der Spannung in ruhenden Transformatoren möglich. Vor allen Dingen läßt sich der hochgespannte Wechselstrom an der Verbrauchsstelle durch Transformatoren ohne alle beweglichen Teile, die also auch keine Aufsicht brauchen, in solchen von niederer Spannung und entsprechend höherer Stromstärke unter Aufrechterhaltung der Leistung – Formel (1) – verwandeln, so daß jede Gefährdung der Benützer vermieden wird. Auch die unmittelbare Erzeugung hochgespannten Stromes ist bei Wechselstrom nicht schwierig. Doch kann man Wechselstrom auch mit niederer Spannung und großer Stromstärke erzeugen und ihn in solchen von hoher Spannung und niedriger Stromstärke umwandeln, der sich zur Fortleitung wirtschaftlich eignet.

Der Wechselstrom wird verwendet als einphasiger Wechselstrom (Wechselstrom im engeren Sinne) oder auch als Drehstrom, zu dessen Fortleitung drei Leiter erforderlich sind, zwischen denen sich drei einfache Wechselströme in eigenartigerweise übereinander legen. Der Drehstrom ist besonders geeignet für den Antrieb von elektrischen Motoren; diese werden für Drehstrom einfacher als für Gleichstrom. Der Bau von Motoren für einphasigen Wechselstrom bereitet noch immer Schwierigkeiten; gerade für Bahnbetriebe wird trotzdem einphasiger Wechselstrom mehrfach angewendet, weil er wie Gleichstrom nur einen Fahrdraht verlangt. Sonst aber ist Drehstrom die für die K. meist verwendete Stromart.

Die Leistungsberechnung nach Formel (1) bezieht sich (genau) nur auf Gleichstrom. Für Wechsel- und Drehstrom ist die Leistung kleiner als das Produkt der Spannung und Stromstärke, sobald die Maxima der Stromwechsel und die Maxima der Spannungswechsel nicht gleichzeitig stattfinden, sobald also eine Phasenverschiebung um einen Winkel φ stattfindet. Es ist dann
NWatt = JAmp × EVolt × cos φ     (2)
cos φ heißt der Leistungsfaktor. Bei Drehstrom ist bei gewissen Schaltungen die rechte Seite überdies noch mit √3 zu multiplizieren, u. zw. wegen der Verwendung von drei Leitern.

Für die Fortleitung von Wechsel- und Drehstrom sind Spannungen von 10–20.000 Volt normal, doch sind schon Spannungen bis zu 100.000 Volt und mehr verwendet worden. Damit lassen sich Entfernungen von vielen hundert Kilometern wirtschaftlich überwinden. Je höher man die Spannung wählt, desto kleiner wird nach Formel (2) die Stromstärke, desto kleiner kann man also die Drahtdurchmesser halten; andererseits wachsen mit der Spannung die an die Isolierung zu stellenden Anforderungen. Wechselstrom wird für industrielle Zwecke in Europa meist mit 50 Perioden in der Sekunde verwendet, d. h. die Ströme und Spannungen in den Leitern wechseln 50mal sekundlich ihre Richtung. Auch Drehstrom hat meist 50 Perioden; die miteinander verketteten drei Wechselströme erzeugen dann ein Drehfeld, das 50mal sekundlich umläuft. Für elektrische Vollbahnen sind Periodenzahlen von 15 oder 162/3 üblich.

Neben der elektrischen treten die übrigen Formen der K. zurück und werden heute nur noch für Sonderfälle verwendet.

Bei der hydraulischen K. wird in der Zentrale Preßwasser unter einen Druck von 50 bis 250 Atm. gesetzt. Für die Fortleitung dienen Röhren aus Stahl mit besonderer Gummidichtung. Die übertragene Leistung in Pferdestärken ist gegeben durch das Produkt aus der Wassermenge, die übertragen wird, und der Spannung, bei der die Übertragung stattfindet. Es ist
NPS = Qcbm/sek × pAtm × 10000/75     (3)
Die Zahl 75 dient der Umrechnung von Meterkilogramm pro Sekunde in PS, die Zahl 10000 rührt her von der Umrechnung der Atmosphären in Kilogramm pro Quadratmeter (1 Atm. = 10.000 kg/m2). Auch bei Druckwasser wird die zur Übertragung einer bestimmten Leistung zu übertragende Wassermenge um so kleiner, je höher man den Druck wählt, um so enger werden alsdann die Rohrleitungen, allerdings auch um so starkwandiger.

Nachteile der Druckwasserübertragung gegenüber der elektrischen sind die Verwendung der umständlichen Rohrleitung gegenüber dem einfacheren elektrischen Kabel, die Möglichkeit des Einfrierens und die Unmöglichkeit wirtschaftlicher Regelung der mit Druckwasser betriebenen Maschinen. Auch ist mittels Druckwasser nur eine langsam hin- und hergehende Bewegung bequem zu erzeugen, schwieriger eine umlaufende, z. B. Brandtsche Gesteinsbohrmaschine. Die Verwendung der hydraulischen

<TEI>
  <text>
    <body>
      <div n="1">
        <div type="lexiconEntry" n="2">
          <p><pb facs="#f0451" n="434"/>
nicht einfach transformieren kann. Da nämlich die Verluste in einer Leitung bestimmten Querschnittes mit dem Quadrat der Stromstärke zunehmen, nicht aber von der Spannung abhängen, so muß man bestrebt sein, die Fortleitung einer verlangten Energiemenge bei tunlichst hoher Spannung zu bewirken, damit nach Formel (1) die Stromstärke entsprechend klein ausfällt. Spannungen über 500 Volt sind aber mit Gleichstrommaschinen nicht leicht zu erzeugen, andererseits wäre die direkte Verwendung höherer Spannungen in Elektromotoren lebensgefährlich.</p><lb/>
          <p>Mit <hi rendition="#g">Wechselstrom</hi> dagegen ist eine einfache Umsetzung der Spannung in ruhenden Transformatoren möglich. Vor allen Dingen läßt sich der hochgespannte Wechselstrom an der Verbrauchsstelle durch Transformatoren ohne alle beweglichen Teile, die also auch keine Aufsicht brauchen, in solchen von niederer Spannung und entsprechend höherer Stromstärke unter Aufrechterhaltung der Leistung &#x2013; Formel (1) &#x2013; verwandeln, so daß jede Gefährdung der Benützer vermieden wird. Auch die unmittelbare Erzeugung hochgespannten Stromes ist bei Wechselstrom nicht schwierig. Doch kann man Wechselstrom auch mit niederer Spannung und großer Stromstärke erzeugen und ihn in solchen von hoher Spannung und niedriger Stromstärke umwandeln, der sich zur Fortleitung wirtschaftlich eignet.</p><lb/>
          <p>Der Wechselstrom wird verwendet als <hi rendition="#g">einphasiger Wechselstrom</hi> (Wechselstrom im engeren Sinne) oder auch als <hi rendition="#g">Drehstrom</hi>, zu dessen Fortleitung drei Leiter erforderlich sind, zwischen denen sich drei einfache Wechselströme in eigenartigerweise übereinander legen. Der Drehstrom ist besonders geeignet für den Antrieb von elektrischen Motoren; diese werden für Drehstrom einfacher als für Gleichstrom. Der Bau von Motoren für einphasigen Wechselstrom bereitet noch immer Schwierigkeiten; gerade für Bahnbetriebe wird trotzdem einphasiger Wechselstrom mehrfach angewendet, weil er wie Gleichstrom nur einen Fahrdraht verlangt. Sonst aber ist Drehstrom die für die K. meist verwendete Stromart.</p><lb/>
          <p>Die Leistungsberechnung nach Formel (1) bezieht sich (genau) nur auf Gleichstrom. Für Wechsel- und Drehstrom ist die Leistung kleiner als das Produkt der Spannung und Stromstärke, sobald die Maxima der Stromwechsel und die Maxima der Spannungswechsel nicht gleichzeitig stattfinden, sobald also eine Phasenverschiebung um einen Winkel &#x03C6; stattfindet. Es ist dann<lb/><hi rendition="#c"><hi rendition="#i">N</hi><hi rendition="#sup">Watt</hi> = <hi rendition="#i">J</hi><hi rendition="#sup">Amp</hi> × <hi rendition="#i">E</hi><hi rendition="#sup">Volt</hi> × cos &#x03C6; <space dim="horizontal"/> (2)</hi><lb/>
cos &#x03C6; heißt der Leistungsfaktor. Bei Drehstrom ist bei gewissen Schaltungen die rechte Seite überdies noch mit &#x221A;3 zu multiplizieren, u. zw. wegen der Verwendung von drei Leitern.</p><lb/>
          <p>Für die Fortleitung von Wechsel- und Drehstrom sind Spannungen von 10&#x2013;20.000 Volt normal, doch sind schon Spannungen bis zu 100.000 Volt und mehr verwendet worden. Damit lassen sich Entfernungen von vielen hundert Kilometern wirtschaftlich überwinden. Je höher man die Spannung wählt, desto kleiner wird nach Formel (2) die Stromstärke, desto kleiner kann man also die Drahtdurchmesser halten; andererseits wachsen mit der Spannung die an die Isolierung zu stellenden Anforderungen. Wechselstrom wird für industrielle Zwecke in Europa meist mit 50 Perioden in der Sekunde verwendet, d. h. die Ströme und Spannungen in den Leitern wechseln 50mal sekundlich ihre Richtung. Auch Drehstrom hat meist 50 Perioden; die miteinander verketteten drei Wechselströme erzeugen dann ein Drehfeld, das 50mal sekundlich umläuft. Für elektrische Vollbahnen sind Periodenzahlen von 15 oder 16<hi rendition="#sup">2</hi>/<hi rendition="#sub">3</hi> üblich.</p><lb/>
          <p>Neben der elektrischen treten die übrigen Formen der K. zurück und werden heute nur noch für Sonderfälle verwendet.</p><lb/>
          <p>Bei der <hi rendition="#g">hydraulischen</hi> K. wird in der Zentrale Preßwasser unter einen Druck von 50 bis 250 Atm. gesetzt. Für die Fortleitung dienen Röhren aus Stahl mit besonderer Gummidichtung. Die übertragene Leistung in Pferdestärken ist gegeben durch das Produkt aus der Wassermenge, die übertragen wird, und der Spannung, bei der die Übertragung stattfindet. Es ist<lb/><hi rendition="#c"><hi rendition="#i">N</hi><hi rendition="#sup">PS</hi> = <hi rendition="#i">Q</hi><hi rendition="#sup">cbm/sek</hi> × <hi rendition="#i">p</hi><hi rendition="#sup">Atm</hi> × <hi rendition="#sup">10000</hi>/<hi rendition="#sub">75</hi> <space dim="horizontal"/> (3)</hi><lb/>
Die Zahl 75 dient der Umrechnung von Meterkilogramm pro Sekunde in PS, die Zahl 10000 rührt her von der Umrechnung der Atmosphären in Kilogramm pro Quadratmeter (1 Atm. = 10.000 <hi rendition="#i">kg</hi>/<hi rendition="#i">m</hi><hi rendition="#sup">2</hi>). Auch bei Druckwasser wird die zur Übertragung einer bestimmten Leistung zu übertragende Wassermenge um so kleiner, je höher man den Druck wählt, um so enger werden alsdann die Rohrleitungen, allerdings auch um so starkwandiger.</p><lb/>
          <p>Nachteile der Druckwasserübertragung gegenüber der elektrischen sind die Verwendung der umständlichen Rohrleitung gegenüber dem einfacheren elektrischen Kabel, die Möglichkeit des Einfrierens und die Unmöglichkeit wirtschaftlicher Regelung der mit Druckwasser betriebenen Maschinen. Auch ist mittels Druckwasser nur eine langsam hin- und hergehende Bewegung bequem zu erzeugen, schwieriger eine umlaufende, z. B. Brandtsche Gesteinsbohrmaschine. Die Verwendung der hydraulischen
</p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[434/0451] nicht einfach transformieren kann. Da nämlich die Verluste in einer Leitung bestimmten Querschnittes mit dem Quadrat der Stromstärke zunehmen, nicht aber von der Spannung abhängen, so muß man bestrebt sein, die Fortleitung einer verlangten Energiemenge bei tunlichst hoher Spannung zu bewirken, damit nach Formel (1) die Stromstärke entsprechend klein ausfällt. Spannungen über 500 Volt sind aber mit Gleichstrommaschinen nicht leicht zu erzeugen, andererseits wäre die direkte Verwendung höherer Spannungen in Elektromotoren lebensgefährlich. Mit Wechselstrom dagegen ist eine einfache Umsetzung der Spannung in ruhenden Transformatoren möglich. Vor allen Dingen läßt sich der hochgespannte Wechselstrom an der Verbrauchsstelle durch Transformatoren ohne alle beweglichen Teile, die also auch keine Aufsicht brauchen, in solchen von niederer Spannung und entsprechend höherer Stromstärke unter Aufrechterhaltung der Leistung – Formel (1) – verwandeln, so daß jede Gefährdung der Benützer vermieden wird. Auch die unmittelbare Erzeugung hochgespannten Stromes ist bei Wechselstrom nicht schwierig. Doch kann man Wechselstrom auch mit niederer Spannung und großer Stromstärke erzeugen und ihn in solchen von hoher Spannung und niedriger Stromstärke umwandeln, der sich zur Fortleitung wirtschaftlich eignet. Der Wechselstrom wird verwendet als einphasiger Wechselstrom (Wechselstrom im engeren Sinne) oder auch als Drehstrom, zu dessen Fortleitung drei Leiter erforderlich sind, zwischen denen sich drei einfache Wechselströme in eigenartigerweise übereinander legen. Der Drehstrom ist besonders geeignet für den Antrieb von elektrischen Motoren; diese werden für Drehstrom einfacher als für Gleichstrom. Der Bau von Motoren für einphasigen Wechselstrom bereitet noch immer Schwierigkeiten; gerade für Bahnbetriebe wird trotzdem einphasiger Wechselstrom mehrfach angewendet, weil er wie Gleichstrom nur einen Fahrdraht verlangt. Sonst aber ist Drehstrom die für die K. meist verwendete Stromart. Die Leistungsberechnung nach Formel (1) bezieht sich (genau) nur auf Gleichstrom. Für Wechsel- und Drehstrom ist die Leistung kleiner als das Produkt der Spannung und Stromstärke, sobald die Maxima der Stromwechsel und die Maxima der Spannungswechsel nicht gleichzeitig stattfinden, sobald also eine Phasenverschiebung um einen Winkel φ stattfindet. Es ist dann NWatt = JAmp × EVolt × cos φ (2) cos φ heißt der Leistungsfaktor. Bei Drehstrom ist bei gewissen Schaltungen die rechte Seite überdies noch mit √3 zu multiplizieren, u. zw. wegen der Verwendung von drei Leitern. Für die Fortleitung von Wechsel- und Drehstrom sind Spannungen von 10–20.000 Volt normal, doch sind schon Spannungen bis zu 100.000 Volt und mehr verwendet worden. Damit lassen sich Entfernungen von vielen hundert Kilometern wirtschaftlich überwinden. Je höher man die Spannung wählt, desto kleiner wird nach Formel (2) die Stromstärke, desto kleiner kann man also die Drahtdurchmesser halten; andererseits wachsen mit der Spannung die an die Isolierung zu stellenden Anforderungen. Wechselstrom wird für industrielle Zwecke in Europa meist mit 50 Perioden in der Sekunde verwendet, d. h. die Ströme und Spannungen in den Leitern wechseln 50mal sekundlich ihre Richtung. Auch Drehstrom hat meist 50 Perioden; die miteinander verketteten drei Wechselströme erzeugen dann ein Drehfeld, das 50mal sekundlich umläuft. Für elektrische Vollbahnen sind Periodenzahlen von 15 oder 162/3 üblich. Neben der elektrischen treten die übrigen Formen der K. zurück und werden heute nur noch für Sonderfälle verwendet. Bei der hydraulischen K. wird in der Zentrale Preßwasser unter einen Druck von 50 bis 250 Atm. gesetzt. Für die Fortleitung dienen Röhren aus Stahl mit besonderer Gummidichtung. Die übertragene Leistung in Pferdestärken ist gegeben durch das Produkt aus der Wassermenge, die übertragen wird, und der Spannung, bei der die Übertragung stattfindet. Es ist NPS = Qcbm/sek × pAtm × 10000/75 (3) Die Zahl 75 dient der Umrechnung von Meterkilogramm pro Sekunde in PS, die Zahl 10000 rührt her von der Umrechnung der Atmosphären in Kilogramm pro Quadratmeter (1 Atm. = 10.000 kg/m2). Auch bei Druckwasser wird die zur Übertragung einer bestimmten Leistung zu übertragende Wassermenge um so kleiner, je höher man den Druck wählt, um so enger werden alsdann die Rohrleitungen, allerdings auch um so starkwandiger. Nachteile der Druckwasserübertragung gegenüber der elektrischen sind die Verwendung der umständlichen Rohrleitung gegenüber dem einfacheren elektrischen Kabel, die Möglichkeit des Einfrierens und die Unmöglichkeit wirtschaftlicher Regelung der mit Druckwasser betriebenen Maschinen. Auch ist mittels Druckwasser nur eine langsam hin- und hergehende Bewegung bequem zu erzeugen, schwieriger eine umlaufende, z. B. Brandtsche Gesteinsbohrmaschine. Die Verwendung der hydraulischen

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen …

zeno.org – Contumax GmbH & Co. KG: Bereitstellung der Texttranskription. (2020-06-17T17:32:44Z) Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Andreas Nolda: Bearbeitung der digitalen Edition. (2020-06-17T17:32:44Z)

Weitere Informationen:

Bogensignaturen: nicht übernommen; Druckfehler: keine Angabe; fremdsprachliches Material: keine Angabe; Geminations-/Abkürzungsstriche: keine Angabe; Hervorhebungen (Antiqua, Sperrschrift, Kursive etc.): gekennzeichnet; Hervorhebungen I/J in Fraktur: keine Angabe; i/j in Fraktur: keine Angabe; Kolumnentitel: nicht übernommen; Kustoden: keine Angabe; langes s (ſ): keine Angabe; Normalisierungen: keine Angabe; rundes r (ꝛ): keine Angabe; Seitenumbrüche markiert: ja; Silbentrennung: aufgelöst; u/v bzw. U/V: keine Angabe; Vokale mit übergest. e: keine Angabe; Vollständigkeit: keine Angabe; Zeichensetzung: keine Angabe; Zeilenumbrüche markiert: nein

Spaltenumbrüche sind nicht markiert. Wiederholungszeichen (") wurden aufgelöst. Komplexe Formeln und Tabellen sind als Grafiken wiedergegeben.

Die Abbildungen im Text stammen von zeno.org – Contumax GmbH & Co. KG.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/roell_eisenbahnwesen06_1914
URL zu dieser Seite: https://www.deutschestextarchiv.de/roell_eisenbahnwesen06_1914/451
Zitationshilfe: Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 6. Berlin, Wien, 1914, S. 434. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/roell_eisenbahnwesen06_1914/451>, abgerufen am 24.08.2024.