Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 6. Berlin, Wien, 1914.

Bild:
<< vorherige Seite

die in Rauchröhren von 75 mm im Durchmesser gelagert und in die in der Rauchkammer liegenden Teilkasten eingewalzt waren (Abb. 64). Der Naßdampf strömt durch die Abb. 64. Überhitzer ältere Bauart Cole (mit Field-Röhre).

inneren, an ihrem hinteren Ende offenen Röhren von 27 mm äußerem Durchmesser nach rückwärts und kehrt durch die äußeren Röhren von 38 mm äußerem Durchmesser zu dem rückwärtigen Raum der Teilkammern zurück, die ihn dem Hauptsammelkasten-Heißdampfraume zuführen, von wo aus der Heißdampf in die Schieberkasten gelangt. Die Regelung der Überhitzung geschieht auch hier durch selbsttätig, verstellbare Klappen in der Rauchkammer. Die Bauart bewährte sich nicht. Ebenso erging es der später von Cole verwendeten Bauart mit vier Field-Röhren in Rauchröhren von 125 mm Durchmesser. Cole verwendete später -Röhren von der Form und den Abmessungen von Schmidt.

Der Überhitzer von Notkin verwendet ebenfalls Field-Röhren. Abweichend von der Cole-Bauart strömt der Naßdampf zuerst durch das äußere Rohr, das als Rippenrohr ausgebildet Abb. 65. Überhitzer von Notkin.

ist (Abb. 65). Die Rauchröhren haben nur 73 mm im Durchmesser. Der Dampfsammelkasten liegt vor den oberen Heizrohren des Rauchkammerrohrs, den Zug hier ebenso wie bei Coles Bauart ungünstig beeinflussend. Der Wirkungsgrad des Überhitzers bleibt erheblich hinter dem der Schmidtschen Bauarten zurück.

Der Überhitzer von Vaughan und Horsey, auf der Canadian-Pacific-Eisenbahn in Benutzung, unterscheidet sich, abgesehen von der vielteiligen Befestigungsart der Röhren an den Dampfsammelkasten, von dem Schmidtschen noch durch die Trennung der Naßdampf- von der Heißdampfkammer und die Lage dieser vor den obersten Rauchröhren in der Rauchkammer, Zug und Reinigung der Röhren erschwerend. Der Nutzeffekt ist dem der Schmidtschen Bauart gleich.

B. Siederohrüberhitzer. Bei diesen wird ein Abb. 66.

Teil der Heizfläche der Siederöhren zur Überhitzung des Naßdampfes benutzt.

Bauart Pielock (Abb. 66). Im Innern des Langkessels ist eine Dampfkammer eingebaut, die sämtliche Siederöhren auf eine bestimmte Länge umschließt. Letztere sind in die beiden Rohrwände dicht eingewalzt. Scheidewände führen den an der Decke eintretenden Naßdampf möglichst um alle Siederohre und hiernach zum Regulator zurück, von wo er in gebräuchlicher Art den Dampfzylindern zugeführt wird.

Bauart Gölsdorf-Clench, Abb. 67, unterscheidet sich von der Pielockschen Bauart nur durch die Lage der Dampfkammer, die in den vorderen Kesselteil, u. zw. so eingebaut ist, daß

die in Rauchröhren von 75 mm im Durchmesser gelagert und in die in der Rauchkammer liegenden Teilkasten eingewalzt waren (Abb. 64). Der Naßdampf strömt durch die Abb. 64. Überhitzer ältere Bauart Cole (mit Field-Röhre).

inneren, an ihrem hinteren Ende offenen Röhren von 27 mm äußerem Durchmesser nach rückwärts und kehrt durch die äußeren Röhren von 38 mm äußerem Durchmesser zu dem rückwärtigen Raum der Teilkammern zurück, die ihn dem Hauptsammelkasten-Heißdampfraume zuführen, von wo aus der Heißdampf in die Schieberkasten gelangt. Die Regelung der Überhitzung geschieht auch hier durch selbsttätig, verstellbare Klappen in der Rauchkammer. Die Bauart bewährte sich nicht. Ebenso erging es der später von Cole verwendeten Bauart mit vier Field-Röhren in Rauchröhren von 125 mm Durchmesser. Cole verwendete später -Röhren von der Form und den Abmessungen von Schmidt.

Der Überhitzer von Notkin verwendet ebenfalls Field-Röhren. Abweichend von der Cole-Bauart strömt der Naßdampf zuerst durch das äußere Rohr, das als Rippenrohr ausgebildet Abb. 65. Überhitzer von Notkin.

ist (Abb. 65). Die Rauchröhren haben nur 73 mm im Durchmesser. Der Dampfsammelkasten liegt vor den oberen Heizrohren des Rauchkammerrohrs, den Zug hier ebenso wie bei Coles Bauart ungünstig beeinflussend. Der Wirkungsgrad des Überhitzers bleibt erheblich hinter dem der Schmidtschen Bauarten zurück.

Der Überhitzer von Vaughan und Horsey, auf der Canadian-Pacific-Eisenbahn in Benutzung, unterscheidet sich, abgesehen von der vielteiligen Befestigungsart der Röhren an den Dampfsammelkasten, von dem Schmidtschen noch durch die Trennung der Naßdampf- von der Heißdampfkammer und die Lage dieser vor den obersten Rauchröhren in der Rauchkammer, Zug und Reinigung der Röhren erschwerend. Der Nutzeffekt ist dem der Schmidtschen Bauart gleich.

B. Siederohrüberhitzer. Bei diesen wird ein Abb. 66.

Teil der Heizfläche der Siederöhren zur Überhitzung des Naßdampfes benutzt.

Bauart Pielock (Abb. 66). Im Innern des Langkessels ist eine Dampfkammer eingebaut, die sämtliche Siederöhren auf eine bestimmte Länge umschließt. Letztere sind in die beiden Rohrwände dicht eingewalzt. Scheidewände führen den an der Decke eintretenden Naßdampf möglichst um alle Siederohre und hiernach zum Regulator zurück, von wo er in gebräuchlicher Art den Dampfzylindern zugeführt wird.

Bauart Gölsdorf-Clench, Abb. 67, unterscheidet sich von der Pielockschen Bauart nur durch die Lage der Dampfkammer, die in den vorderen Kesselteil, u. zw. so eingebaut ist, daß

<TEI>
  <text>
    <body>
      <div n="1">
        <div type="lexiconEntry" n="2">
          <p><pb facs="#f0157" n="143"/>
die in Rauchröhren von 75 <hi rendition="#i">mm</hi> im Durchmesser gelagert und in die in der Rauchkammer liegenden Teilkasten eingewalzt waren (Abb. 64). Der Naßdampf strömt durch die <figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen06_1914/figures/roell_eisenbahnwesen06_1914_figure-0136.jpg"><head>Abb. 64. Überhitzer ältere Bauart Cole (mit Field-Röhre).</head><lb/></figure><lb/>
inneren, an ihrem hinteren Ende offenen Röhren von 27 <hi rendition="#i">mm</hi> äußerem Durchmesser nach rückwärts und kehrt durch die äußeren Röhren von 38 <hi rendition="#i">mm</hi> äußerem Durchmesser zu dem rückwärtigen Raum der Teilkammern zurück, die ihn dem Hauptsammelkasten-Heißdampfraume zuführen, von wo aus der Heißdampf in die Schieberkasten gelangt. Die Regelung der Überhitzung geschieht auch hier durch selbsttätig, verstellbare Klappen in der Rauchkammer. Die Bauart bewährte sich nicht. Ebenso erging es der später von Cole verwendeten Bauart mit vier Field-Röhren in Rauchröhren von 125 <hi rendition="#i">mm</hi> Durchmesser. Cole verwendete später <figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen06_1914/figures/roell_eisenbahnwesen06_1914_figure-0141a.jpg"/>-Röhren von der Form und den Abmessungen von Schmidt.</p><lb/>
          <p>Der Überhitzer von <hi rendition="#g">Notkin</hi> verwendet ebenfalls Field-Röhren. Abweichend von der Cole-Bauart strömt der Naßdampf zuerst durch das äußere Rohr, das als Rippenrohr ausgebildet <figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen06_1914/figures/roell_eisenbahnwesen06_1914_figure-0137.jpg"><head>Abb. 65. Überhitzer von Notkin.</head><lb/></figure><lb/>
ist (Abb. 65). Die Rauchröhren haben nur 73 <hi rendition="#i">mm</hi> im Durchmesser. Der Dampfsammelkasten liegt vor den oberen Heizrohren des Rauchkammerrohrs, den Zug hier ebenso wie bei Coles Bauart ungünstig beeinflussend. Der Wirkungsgrad des Überhitzers bleibt erheblich hinter dem der Schmidtschen Bauarten zurück.</p><lb/>
          <p>Der Überhitzer von <hi rendition="#g">Vaughan</hi> und <hi rendition="#g">Horsey</hi>, auf der Canadian-Pacific-Eisenbahn in Benutzung, unterscheidet sich, abgesehen von der vielteiligen Befestigungsart der Röhren an den Dampfsammelkasten, von dem Schmidtschen noch durch die Trennung der Naßdampf- von der Heißdampfkammer und die Lage dieser vor den obersten Rauchröhren in der Rauchkammer, Zug und Reinigung der Röhren erschwerend. Der Nutzeffekt ist dem der Schmidtschen Bauart gleich.</p><lb/>
          <p><hi rendition="#i">B</hi>. <hi rendition="#g">Siederohrüberhitzer</hi>. Bei diesen wird ein <figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen06_1914/figures/roell_eisenbahnwesen06_1914_figure-0138.jpg"><head>Abb. 66.</head><lb/></figure><lb/>
Teil der Heizfläche der Siederöhren zur Überhitzung des Naßdampfes benutzt.</p><lb/>
          <p>Bauart <hi rendition="#g">Pielock</hi> (Abb. 66). Im Innern des Langkessels ist eine Dampfkammer eingebaut, die sämtliche Siederöhren auf eine bestimmte Länge umschließt. Letztere sind in die beiden Rohrwände dicht eingewalzt. Scheidewände führen den an der Decke eintretenden Naßdampf möglichst um alle Siederohre und hiernach zum Regulator zurück, von wo er in gebräuchlicher Art den Dampfzylindern zugeführt wird.</p><lb/>
          <p>Bauart <hi rendition="#g">Gölsdorf-Clench</hi>, Abb. 67, unterscheidet sich von der Pielockschen Bauart nur durch die Lage der Dampfkammer, die in den vorderen Kesselteil, u. zw. so eingebaut ist, daß
</p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[143/0157] die in Rauchröhren von 75 mm im Durchmesser gelagert und in die in der Rauchkammer liegenden Teilkasten eingewalzt waren (Abb. 64). Der Naßdampf strömt durch die [Abbildung Abb. 64. Überhitzer ältere Bauart Cole (mit Field-Röhre). ] inneren, an ihrem hinteren Ende offenen Röhren von 27 mm äußerem Durchmesser nach rückwärts und kehrt durch die äußeren Röhren von 38 mm äußerem Durchmesser zu dem rückwärtigen Raum der Teilkammern zurück, die ihn dem Hauptsammelkasten-Heißdampfraume zuführen, von wo aus der Heißdampf in die Schieberkasten gelangt. Die Regelung der Überhitzung geschieht auch hier durch selbsttätig, verstellbare Klappen in der Rauchkammer. Die Bauart bewährte sich nicht. Ebenso erging es der später von Cole verwendeten Bauart mit vier Field-Röhren in Rauchröhren von 125 mm Durchmesser. Cole verwendete später [Abbildung] -Röhren von der Form und den Abmessungen von Schmidt. Der Überhitzer von Notkin verwendet ebenfalls Field-Röhren. Abweichend von der Cole-Bauart strömt der Naßdampf zuerst durch das äußere Rohr, das als Rippenrohr ausgebildet [Abbildung Abb. 65. Überhitzer von Notkin. ] ist (Abb. 65). Die Rauchröhren haben nur 73 mm im Durchmesser. Der Dampfsammelkasten liegt vor den oberen Heizrohren des Rauchkammerrohrs, den Zug hier ebenso wie bei Coles Bauart ungünstig beeinflussend. Der Wirkungsgrad des Überhitzers bleibt erheblich hinter dem der Schmidtschen Bauarten zurück. Der Überhitzer von Vaughan und Horsey, auf der Canadian-Pacific-Eisenbahn in Benutzung, unterscheidet sich, abgesehen von der vielteiligen Befestigungsart der Röhren an den Dampfsammelkasten, von dem Schmidtschen noch durch die Trennung der Naßdampf- von der Heißdampfkammer und die Lage dieser vor den obersten Rauchröhren in der Rauchkammer, Zug und Reinigung der Röhren erschwerend. Der Nutzeffekt ist dem der Schmidtschen Bauart gleich. B. Siederohrüberhitzer. Bei diesen wird ein [Abbildung Abb. 66. ] Teil der Heizfläche der Siederöhren zur Überhitzung des Naßdampfes benutzt. Bauart Pielock (Abb. 66). Im Innern des Langkessels ist eine Dampfkammer eingebaut, die sämtliche Siederöhren auf eine bestimmte Länge umschließt. Letztere sind in die beiden Rohrwände dicht eingewalzt. Scheidewände führen den an der Decke eintretenden Naßdampf möglichst um alle Siederohre und hiernach zum Regulator zurück, von wo er in gebräuchlicher Art den Dampfzylindern zugeführt wird. Bauart Gölsdorf-Clench, Abb. 67, unterscheidet sich von der Pielockschen Bauart nur durch die Lage der Dampfkammer, die in den vorderen Kesselteil, u. zw. so eingebaut ist, daß

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen …

zeno.org – Contumax GmbH & Co. KG: Bereitstellung der Texttranskription. (2020-06-17T17:32:44Z) Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Andreas Nolda: Bearbeitung der digitalen Edition. (2020-06-17T17:32:44Z)

Weitere Informationen:

Bogensignaturen: nicht übernommen; Druckfehler: keine Angabe; fremdsprachliches Material: keine Angabe; Geminations-/Abkürzungsstriche: keine Angabe; Hervorhebungen (Antiqua, Sperrschrift, Kursive etc.): gekennzeichnet; Hervorhebungen I/J in Fraktur: keine Angabe; i/j in Fraktur: keine Angabe; Kolumnentitel: nicht übernommen; Kustoden: keine Angabe; langes s (ſ): keine Angabe; Normalisierungen: keine Angabe; rundes r (ꝛ): keine Angabe; Seitenumbrüche markiert: ja; Silbentrennung: aufgelöst; u/v bzw. U/V: keine Angabe; Vokale mit übergest. e: keine Angabe; Vollständigkeit: keine Angabe; Zeichensetzung: keine Angabe; Zeilenumbrüche markiert: nein

Spaltenumbrüche sind nicht markiert. Wiederholungszeichen (") wurden aufgelöst. Komplexe Formeln und Tabellen sind als Grafiken wiedergegeben.

Die Abbildungen im Text stammen von zeno.org – Contumax GmbH & Co. KG.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/roell_eisenbahnwesen06_1914
URL zu dieser Seite: https://www.deutschestextarchiv.de/roell_eisenbahnwesen06_1914/157
Zitationshilfe: Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 6. Berlin, Wien, 1914, S. 143. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/roell_eisenbahnwesen06_1914/157>, abgerufen am 22.11.2024.