Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 4. Berlin, Wien, 1913.

Bild:
<< vorherige Seite

I. Motoren ohne Querfeld. Es sind dies die Serienmotoren. Für diese ist eine niedrige Periodenzahl, eine größere Umdrehungszahl und eine größere Polzahl vorteilhaft. Sie können bis 25 Perioden ausgeführt werden, doch werden sie gewöhnlich für 162/3 Perioden verwendet. Sie werden je nach ihrer Größe für Spannungen von rund 150-400 Volt gebaut. Von derartigen Motoren seien folgende genannt:

a) Der kompensierte Serienmotor mit Widerstandsverbindungen. Wie auf Abb. 165 zu seilen ist, besitzt der Stator eine Erregerwicklung I und eine Kompensationswicklung II, die auf der ersteren senkrecht steht. Beide sind mit dem Anker in Serie geschaltet; es kann jedoch auch die Kompensationswicklung, wie gestrichelt angedeutet, kurzgeschlossen
Abb. 165. Kompensierter Serienmotor.
Abb. 166. Kompensierter Serienmotor mit Wendefeldern.
Abb. 167. Repulsionsmotor von Elihu Thomson.
Abb. 168. Repulsionsmotor von Atkinson.

Abb. 169. Repulsionsmotor von Deri.
Abb. 170. Repulsionsmotor von Winter-Eichberg.
Abb. 171. Repulsionsmotor von Winter-Eichberg mit Erregertransformator.
Abb. 172. Doppelt gespeister Motor von Winter-Eichberg.

werden. Teile der Ankerspulen sind aus Material von hohem Widerstand ausgeführt, so daß die Kurzschlußströme in denselben klein gehalten werden. Das Reversieren geschieht durch Umdrehen der Stromrichtung in der Erregerwicklung.

b) Der kompensierte Serienmotor mit lokalen Wendefeldern. (Abb. 166.) Er ist ähnlich dem vorhergehenden, der Anker hat jedoch keine Widerstandsverbindungen. Der Stator besitzt außer der Erreger- und Kompensationswicklung noch eine Wendepolwicklung III, die von außen so gespeist wird, daß sie in den durch die Bürsten kurzgeschlossenen Spulen ein Feld erzeugt, das die elektromotorische Kraft des Kurzschlusses ganz oder teilweise aufhebt.

II. Motoren mit Querfeld. Hierzu gehören die reinen Repulsionsmotoren und die doppelt gespeisten Motoren. Die ersteren haben den Vorteil, für höhere Spannungen ausführbar zu sein, da dem Anker direkt keine Spannung zugeführt wird, sie haben dagegen den Nach teil, daß die höchste Betriebstourenzahl die durch die Polzahl gegebene synchrone Touren zahl nur um etwa 50% überschreiten darf. Man ist daher in der Wahl der für den Entwurf günstigsten Polzahl nicht frei. Die Repulsionsmotoren werden bis 850 Volt gebaut, weshalb die Ströme in den Steuerapparaten kleiner sind. Sie sind auch für höhere Periodenzahlen (bis 50) verwendbar.

a) Repulsionsmotoren. System Elihu Thomson. (Abb. 167.) Dieser Repulsionsmotor besitzt Statorerregung I und eine kurzgeschlossene Ankerwicklung II, die mit der ersteren einen Winkel a einschließt. Das Reversieren erfolgt durch Bürstenverdrehung, so daß der Winkel a negativ wird.

System Atkinson. (Abb. 168.) Der Stator besitzt 2 aufeinander senkrechte Wicklungen, die Erregerwicklung I und die Arbeitswicklung II. Der Anker ist kurzgeschlossen. Das Reversieren erfolgt durch Umdrehung der Stromrichtung in der Erregerwicklung.

System Deri. (Abb. 169.) Der Motor besitzt eine Statorerregung I und 2 Paar kurzgeschlossene Ankerbürsten, von welchen die mit A und A1, bezeichneten fest sind, während die beiden anderen zum Reversieren verschoben werden.

System Winter-Eichberg. Abb. 170 zeigt die einfachste Form desselben. I ist die Statorwicklung, II die kurzgeschlossene Ankerwicklung. Die Erregung geschieht durch den Anker, indem der Erregerstrom durch die auf die Kurzschlußwicklung senkrecht stehenden Erregerbürsten zugeführt wird. Hierdurch wird eine erhebliche Verbesserung des Leistungsfaktors gegenüber den anderen Repulsionsmotoren erreicht. Ist die notwendige Feldstromstärke nicht gleich der Arbeitsstromstärke im Stator, so muß der für die Erregung nötige Strom einem Transformator III (Abb. 171) entnommen werden, der in Serie mit der Statorwicklung liegt und Erregertransformator heißt. Das Reversieren erfolgt durch Umkehren der Erregerstromrichtung im Anker.

b) Doppelt gespeister Motor System Winter-Eichberg. (Abb. 172.) Er vereinigt das Serien- und Repulsionsprinzip. Der Stator hat eine Erregerwicklung I und eine Kompensationswicklung II, die mit dem Anker in Serie geschaltet sind.

I. Motoren ohne Querfeld. Es sind dies die Serienmotoren. Für diese ist eine niedrige Periodenzahl, eine größere Umdrehungszahl und eine größere Polzahl vorteilhaft. Sie können bis 25 Perioden ausgeführt werden, doch werden sie gewöhnlich für 162/3 Perioden verwendet. Sie werden je nach ihrer Größe für Spannungen von rund 150–400 Volt gebaut. Von derartigen Motoren seien folgende genannt:

a) Der kompensierte Serienmotor mit Widerstandsverbindungen. Wie auf Abb. 165 zu seilen ist, besitzt der Stator eine Erregerwicklung I und eine Kompensationswicklung II, die auf der ersteren senkrecht steht. Beide sind mit dem Anker in Serie geschaltet; es kann jedoch auch die Kompensationswicklung, wie gestrichelt angedeutet, kurzgeschlossen
Abb. 165. Kompensierter Serienmotor.
Abb. 166. Kompensierter Serienmotor mit Wendefeldern.
Abb. 167. Repulsionsmotor von Elihu Thomson.
Abb. 168. Repulsionsmotor von Atkinson.

Abb. 169. Repulsionsmotor von Déri.
Abb. 170. Repulsionsmotor von Winter-Eichberg.
Abb. 171. Repulsionsmotor von Winter-Eichberg mit Erregertransformator.
Abb. 172. Doppelt gespeister Motor von Winter-Eichberg.

werden. Teile der Ankerspulen sind aus Material von hohem Widerstand ausgeführt, so daß die Kurzschlußströme in denselben klein gehalten werden. Das Reversieren geschieht durch Umdrehen der Stromrichtung in der Erregerwicklung.

b) Der kompensierte Serienmotor mit lokalen Wendefeldern. (Abb. 166.) Er ist ähnlich dem vorhergehenden, der Anker hat jedoch keine Widerstandsverbindungen. Der Stator besitzt außer der Erreger- und Kompensationswicklung noch eine Wendepolwicklung III, die von außen so gespeist wird, daß sie in den durch die Bürsten kurzgeschlossenen Spulen ein Feld erzeugt, das die elektromotorische Kraft des Kurzschlusses ganz oder teilweise aufhebt.

II. Motoren mit Querfeld. Hierzu gehören die reinen Repulsionsmotoren und die doppelt gespeisten Motoren. Die ersteren haben den Vorteil, für höhere Spannungen ausführbar zu sein, da dem Anker direkt keine Spannung zugeführt wird, sie haben dagegen den Nach teil, daß die höchste Betriebstourenzahl die durch die Polzahl gegebene synchrone Touren zahl nur um etwa 50% überschreiten darf. Man ist daher in der Wahl der für den Entwurf günstigsten Polzahl nicht frei. Die Repulsionsmotoren werden bis 850 Volt gebaut, weshalb die Ströme in den Steuerapparaten kleiner sind. Sie sind auch für höhere Periodenzahlen (bis 50) verwendbar.

a) Repulsionsmotoren. System Elihu Thomson. (Abb. 167.) Dieser Repulsionsmotor besitzt Statorerregung I und eine kurzgeschlossene Ankerwicklung II, die mit der ersteren einen Winkel α einschließt. Das Reversieren erfolgt durch Bürstenverdrehung, so daß der Winkel α negativ wird.

System Atkinson. (Abb. 168.) Der Stator besitzt 2 aufeinander senkrechte Wicklungen, die Erregerwicklung I und die Arbeitswicklung II. Der Anker ist kurzgeschlossen. Das Reversieren erfolgt durch Umdrehung der Stromrichtung in der Erregerwicklung.

System Déri. (Abb. 169.) Der Motor besitzt eine Statorerregung I und 2 Paar kurzgeschlossene Ankerbürsten, von welchen die mit A und A1, bezeichneten fest sind, während die beiden anderen zum Reversieren verschoben werden.

System Winter-Eichberg. Abb. 170 zeigt die einfachste Form desselben. I ist die Statorwicklung, II die kurzgeschlossene Ankerwicklung. Die Erregung geschieht durch den Anker, indem der Erregerstrom durch die auf die Kurzschlußwicklung senkrecht stehenden Erregerbürsten zugeführt wird. Hierdurch wird eine erhebliche Verbesserung des Leistungsfaktors gegenüber den anderen Repulsionsmotoren erreicht. Ist die notwendige Feldstromstärke nicht gleich der Arbeitsstromstärke im Stator, so muß der für die Erregung nötige Strom einem Transformator III (Abb. 171) entnommen werden, der in Serie mit der Statorwicklung liegt und Erregertransformator heißt. Das Reversieren erfolgt durch Umkehren der Erregerstromrichtung im Anker.

b) Doppelt gespeister Motor System Winter-Eichberg. (Abb. 172.) Er vereinigt das Serien- und Repulsionsprinzip. Der Stator hat eine Erregerwicklung I und eine Kompensationswicklung II, die mit dem Anker in Serie geschaltet sind.

<TEI>
  <text>
    <body>
      <div n="1">
        <div type="lexiconEntry" n="2">
          <p>
            <pb facs="#f0261" n="250"/>
          </p><lb/>
          <p>I. <hi rendition="#g">Motoren ohne Querfeld</hi>. Es sind dies die Serienmotoren. Für diese ist eine niedrige Periodenzahl, eine größere Umdrehungszahl und eine größere Polzahl vorteilhaft. Sie können bis 25 Perioden ausgeführt werden, doch werden sie gewöhnlich für 16<hi rendition="#sup">2</hi>/<hi rendition="#sub">3</hi> Perioden verwendet. Sie werden je nach ihrer Größe für Spannungen von rund 150&#x2013;400 Volt gebaut. Von derartigen Motoren seien folgende genannt:</p><lb/>
          <p><hi rendition="#i">a)</hi><hi rendition="#g">Der kompensierte Serienmotor mit Widerstandsverbindungen</hi>. Wie auf Abb. 165 zu seilen ist, besitzt der Stator eine Erregerwicklung I und eine Kompensationswicklung II, die auf der ersteren senkrecht steht. Beide sind mit dem Anker in Serie geschaltet; es kann jedoch auch die Kompensationswicklung, wie gestrichelt angedeutet, kurzgeschlossen<lb/><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0191.jpg"><head>Abb. 165. Kompensierter Serienmotor.</head><lb/></figure><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0190.jpg"><head>Abb. 166. Kompensierter Serienmotor mit Wendefeldern.</head><lb/></figure><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0195.jpg"><head>Abb. 167. Repulsionsmotor von Elihu Thomson.</head><lb/></figure><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0194.jpg"><head>Abb. 168. Repulsionsmotor von Atkinson.</head><lb/></figure><lb/><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0192.jpg"><head>Abb. 169. Repulsionsmotor von Déri.</head><lb/></figure><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0193.jpg"><head>Abb. 170. Repulsionsmotor von Winter-Eichberg.</head><lb/></figure><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0197.jpg"><head>Abb. 171. Repulsionsmotor von Winter-Eichberg mit Erregertransformator.</head><lb/></figure><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen04_1913/figures/roell_eisenbahnwesen04_1913_figure-0196.jpg"><head>Abb. 172. Doppelt gespeister Motor von Winter-Eichberg.</head><lb/></figure><lb/>
werden. Teile der Ankerspulen sind aus Material von hohem Widerstand ausgeführt, so daß die Kurzschlußströme in denselben klein gehalten werden. Das Reversieren geschieht durch Umdrehen der Stromrichtung in der Erregerwicklung.</p><lb/>
          <p><hi rendition="#i">b)</hi><hi rendition="#g">Der kompensierte Serienmotor mit lokalen Wendefeldern</hi>. (Abb. 166.) Er ist ähnlich dem vorhergehenden, der Anker hat jedoch keine Widerstandsverbindungen. Der Stator besitzt außer der Erreger- und Kompensationswicklung noch eine Wendepolwicklung III, die von außen so gespeist wird, daß sie in den durch die Bürsten kurzgeschlossenen Spulen ein Feld erzeugt, das die elektromotorische Kraft des Kurzschlusses ganz oder teilweise aufhebt.</p><lb/>
          <p>II. <hi rendition="#g">Motoren mit Querfeld</hi>. Hierzu gehören die reinen Repulsionsmotoren und die doppelt gespeisten Motoren. Die ersteren haben den Vorteil, für höhere Spannungen ausführbar zu sein, da dem Anker direkt keine Spannung zugeführt wird, sie haben dagegen den Nach teil, daß die höchste Betriebstourenzahl die durch die Polzahl gegebene synchrone Touren zahl nur um etwa 50<hi rendition="#i">%</hi> überschreiten darf. Man ist daher in der Wahl der für den Entwurf günstigsten Polzahl nicht frei. Die Repulsionsmotoren werden bis 850 Volt gebaut, weshalb die Ströme in den Steuerapparaten kleiner sind. Sie sind auch für höhere Periodenzahlen (bis 50) verwendbar.</p><lb/>
          <p><hi rendition="#i">a)</hi><hi rendition="#g">Repulsionsmotoren</hi>. <hi rendition="#g">System Elihu Thomson</hi>. (Abb. 167.) Dieser Repulsionsmotor besitzt Statorerregung I und eine kurzgeschlossene Ankerwicklung II, die mit der ersteren einen Winkel &#x03B1; einschließt. Das Reversieren erfolgt durch Bürstenverdrehung, so daß der Winkel &#x03B1; negativ wird.</p><lb/>
          <p><hi rendition="#g">System Atkinson</hi>. (Abb. 168.) Der Stator besitzt 2 aufeinander senkrechte Wicklungen, die Erregerwicklung I und die Arbeitswicklung II. Der Anker ist kurzgeschlossen. Das Reversieren erfolgt durch Umdrehung der Stromrichtung in der Erregerwicklung.</p><lb/>
          <p><hi rendition="#g">System Déri</hi>. (Abb. 169.) Der Motor besitzt eine Statorerregung I und 2 Paar kurzgeschlossene Ankerbürsten, von welchen die mit <hi rendition="#i">A</hi> und <hi rendition="#i">A</hi><hi rendition="#sub">1</hi>, bezeichneten fest sind, während die beiden anderen zum Reversieren verschoben werden.</p><lb/>
          <p><hi rendition="#g">System Winter-Eichberg</hi>. Abb. 170 zeigt die einfachste Form desselben. I ist die Statorwicklung, II die kurzgeschlossene Ankerwicklung. Die Erregung geschieht durch den Anker, indem der Erregerstrom durch die auf die Kurzschlußwicklung senkrecht stehenden Erregerbürsten zugeführt wird. Hierdurch wird eine erhebliche Verbesserung des Leistungsfaktors gegenüber den anderen Repulsionsmotoren erreicht. Ist die notwendige Feldstromstärke nicht gleich der Arbeitsstromstärke im Stator, so muß der für die Erregung nötige Strom einem Transformator III (Abb. 171) entnommen werden, der in Serie mit der Statorwicklung liegt und Erregertransformator heißt. Das Reversieren erfolgt durch Umkehren der Erregerstromrichtung im Anker.</p><lb/>
          <p><hi rendition="#i">b)</hi><hi rendition="#g">Doppelt gespeister Motor System Winter-Eichberg</hi>. (Abb. 172.) Er vereinigt das Serien- und Repulsionsprinzip. Der Stator hat eine Erregerwicklung I und eine Kompensationswicklung II, die mit dem Anker in Serie geschaltet sind.
</p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[250/0261] I. Motoren ohne Querfeld. Es sind dies die Serienmotoren. Für diese ist eine niedrige Periodenzahl, eine größere Umdrehungszahl und eine größere Polzahl vorteilhaft. Sie können bis 25 Perioden ausgeführt werden, doch werden sie gewöhnlich für 162/3 Perioden verwendet. Sie werden je nach ihrer Größe für Spannungen von rund 150–400 Volt gebaut. Von derartigen Motoren seien folgende genannt: a) Der kompensierte Serienmotor mit Widerstandsverbindungen. Wie auf Abb. 165 zu seilen ist, besitzt der Stator eine Erregerwicklung I und eine Kompensationswicklung II, die auf der ersteren senkrecht steht. Beide sind mit dem Anker in Serie geschaltet; es kann jedoch auch die Kompensationswicklung, wie gestrichelt angedeutet, kurzgeschlossen [Abbildung Abb. 165. Kompensierter Serienmotor. ] [Abbildung Abb. 166. Kompensierter Serienmotor mit Wendefeldern. ] [Abbildung Abb. 167. Repulsionsmotor von Elihu Thomson. ] [Abbildung Abb. 168. Repulsionsmotor von Atkinson. ] [Abbildung Abb. 169. Repulsionsmotor von Déri. ] [Abbildung Abb. 170. Repulsionsmotor von Winter-Eichberg. ] [Abbildung Abb. 171. Repulsionsmotor von Winter-Eichberg mit Erregertransformator. ] [Abbildung Abb. 172. Doppelt gespeister Motor von Winter-Eichberg. ] werden. Teile der Ankerspulen sind aus Material von hohem Widerstand ausgeführt, so daß die Kurzschlußströme in denselben klein gehalten werden. Das Reversieren geschieht durch Umdrehen der Stromrichtung in der Erregerwicklung. b) Der kompensierte Serienmotor mit lokalen Wendefeldern. (Abb. 166.) Er ist ähnlich dem vorhergehenden, der Anker hat jedoch keine Widerstandsverbindungen. Der Stator besitzt außer der Erreger- und Kompensationswicklung noch eine Wendepolwicklung III, die von außen so gespeist wird, daß sie in den durch die Bürsten kurzgeschlossenen Spulen ein Feld erzeugt, das die elektromotorische Kraft des Kurzschlusses ganz oder teilweise aufhebt. II. Motoren mit Querfeld. Hierzu gehören die reinen Repulsionsmotoren und die doppelt gespeisten Motoren. Die ersteren haben den Vorteil, für höhere Spannungen ausführbar zu sein, da dem Anker direkt keine Spannung zugeführt wird, sie haben dagegen den Nach teil, daß die höchste Betriebstourenzahl die durch die Polzahl gegebene synchrone Touren zahl nur um etwa 50% überschreiten darf. Man ist daher in der Wahl der für den Entwurf günstigsten Polzahl nicht frei. Die Repulsionsmotoren werden bis 850 Volt gebaut, weshalb die Ströme in den Steuerapparaten kleiner sind. Sie sind auch für höhere Periodenzahlen (bis 50) verwendbar. a) Repulsionsmotoren. System Elihu Thomson. (Abb. 167.) Dieser Repulsionsmotor besitzt Statorerregung I und eine kurzgeschlossene Ankerwicklung II, die mit der ersteren einen Winkel α einschließt. Das Reversieren erfolgt durch Bürstenverdrehung, so daß der Winkel α negativ wird. System Atkinson. (Abb. 168.) Der Stator besitzt 2 aufeinander senkrechte Wicklungen, die Erregerwicklung I und die Arbeitswicklung II. Der Anker ist kurzgeschlossen. Das Reversieren erfolgt durch Umdrehung der Stromrichtung in der Erregerwicklung. System Déri. (Abb. 169.) Der Motor besitzt eine Statorerregung I und 2 Paar kurzgeschlossene Ankerbürsten, von welchen die mit A und A1, bezeichneten fest sind, während die beiden anderen zum Reversieren verschoben werden. System Winter-Eichberg. Abb. 170 zeigt die einfachste Form desselben. I ist die Statorwicklung, II die kurzgeschlossene Ankerwicklung. Die Erregung geschieht durch den Anker, indem der Erregerstrom durch die auf die Kurzschlußwicklung senkrecht stehenden Erregerbürsten zugeführt wird. Hierdurch wird eine erhebliche Verbesserung des Leistungsfaktors gegenüber den anderen Repulsionsmotoren erreicht. Ist die notwendige Feldstromstärke nicht gleich der Arbeitsstromstärke im Stator, so muß der für die Erregung nötige Strom einem Transformator III (Abb. 171) entnommen werden, der in Serie mit der Statorwicklung liegt und Erregertransformator heißt. Das Reversieren erfolgt durch Umkehren der Erregerstromrichtung im Anker. b) Doppelt gespeister Motor System Winter-Eichberg. (Abb. 172.) Er vereinigt das Serien- und Repulsionsprinzip. Der Stator hat eine Erregerwicklung I und eine Kompensationswicklung II, die mit dem Anker in Serie geschaltet sind.

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen …

zeno.org – Contumax GmbH & Co. KG: Bereitstellung der Texttranskription. (2020-06-17T17:32:48Z) Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Andreas Nolda: Bearbeitung der digitalen Edition. (2020-06-17T17:32:48Z)

Weitere Informationen:

Bogensignaturen: nicht übernommen; Druckfehler: keine Angabe; fremdsprachliches Material: keine Angabe; Geminations-/Abkürzungsstriche: keine Angabe; Hervorhebungen (Antiqua, Sperrschrift, Kursive etc.): gekennzeichnet; Hervorhebungen I/J in Fraktur: keine Angabe; i/j in Fraktur: keine Angabe; Kolumnentitel: nicht übernommen; Kustoden: keine Angabe; langes s (ſ): keine Angabe; Normalisierungen: keine Angabe; rundes r (ꝛ): keine Angabe; Seitenumbrüche markiert: ja; Silbentrennung: aufgelöst; u/v bzw. U/V: keine Angabe; Vokale mit übergest. e: keine Angabe; Vollständigkeit: keine Angabe; Zeichensetzung: keine Angabe; Zeilenumbrüche markiert: nein

Spaltenumbrüche sind nicht markiert. Wiederholungszeichen (") wurden aufgelöst. Komplexe Formeln und Tabellen sind als Grafiken wiedergegeben.

Die Abbildungen im Text stammen von zeno.org – Contumax GmbH & Co. KG.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913
URL zu dieser Seite: https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913/261
Zitationshilfe: Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 4. Berlin, Wien, 1913, S. 250. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913/261>, abgerufen am 25.11.2024.