Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 2. Berlin, Wien, 1912.

Bild:
<< vorherige Seite

Die Temperaturspannungen werden sonach im allgemeinen beträchtlich größer als bei dem Bogen mit Kämpfergelenken.

B. Gitter- oder Fachwerksbogen.

Die hierhergehörigen Fachwerksträger sind durch das Auftreten von horizontalen Auflagerkräften als Bogen, bzw. Hängewerke gekennzeichnet; sie bestehen immer aus zwei Gurtungen, von denen mindestens eine gekrümmt, bzw. polygonal ist und die durch eine Ausfachung (Gitterwerk) miteinander verbunden sind. Die Berechnung der Stabkräfte hat nach der allgemeinen Fachwerkstheorie zu geschehen, die von der vereinfachenden Annahme ausgeht, daß die Verbindung der Stäbe durch reibungslose Gelenke bewerkstelligt ist.

Sind die äußeren Kräfte, d. s. die Belastungen und die Auflagerkräfte, bekannt, so kann für


Abb. 242.
einen durch das Fachwerk geführten Schnitt die Resultierende der auf den abgetrennten Trägerteil einwirkenden äußeren Kräfte bestimmt werden (Abb. 242). Diese sei R, ihre Momente auf die Knotenpunkte o und u bezogen, seien M0 und Mu. Dann sind mit den Bezeichnungen der Abbildung die Gurtspannungen

Um die größten Werte dieser Gurtspannungen zu erhalten, hat man wieder die ungünstigste Belastung anzunehmen, die sich in ganz gleicher Weise wie hinsichtlich der Momente für den vollwandigen Bogenträger bestimmt (Abb. 234). Es treten nur an Stelle der Kernpunkte K1 und K2 die beiden Momentenpunkte u und o.

Die Spannungen der Gitterstäbe werden bei parallelen, bzw. konzentrischen Gurtungen aus den Querkräften erhalten. Bei nicht parallelen Gurtungen ist der Schnittpunkt der beiden dem betreffenden Fach angehörenden Gurtstäbe als Momentenpunkt anzusehen und folgt dann die Gitterstabspannung aus
S = Mz/d.

Die Größtwerte der Spannungen werden am besten mit Hilfe von Einflußlinien erhalten. Letztere sind identisch mit den Einflußlinien für die Momente Mo, Mu und Mz und bei einem gelenkig gelagerten Bogen aus der Einflußlinie des Horizontalschubes H leicht abzuleiten, analog wie bei Vollwandbogen (Abb. 240). In Abb. 243 ist in dieser Weise


Abb. 243.
die Einflußlinie der Stabkraft S des Ausfachungsstabes o, u dargestellt. Setzt man nämlich Mz = Mz - Hyz, so ist Die nach dem Kraftmaßstab der H-Linie gemessenen Ordinaten der in Abb. 243 schraffierten Fläche sind sonach noch mit yz/d zu multiplizieren.

Es erübrigt nun noch zu zeigen, wie die Auflagerkräfte zu berechnen sind, deren Kenntnis im vorhergehenden vorausgesetzt wurde. Bei einem Bogen mit gelenkiger Auflagerung handelt es sich nur um Bestimmung des Horizontalschubes, um Verzeichnung der H-Linie. Diese wird beim statisch bestimmten Dreigelenkbogen wie oben angegeben (Abb. 236) erhalten. Beim Zweigelenkbogen ist der Horizontalschub aus der elastischen Formänderung


Abb. 244.
abzuleiten. Hat der Bogen bei geringer Tragwandhöhe parallele Gurtungen (Abb. 244), sonach ein wenig veränderliches Trägheitsmoment, so kann mit ausreichender Annäherung dasselbe Berechnungsverfahren wie für vollwandige Bogen (Formel 16-36) in Anwendung gebracht werden. Sonst wird der überhaupt bei statisch unbestimmten Fachwerksanordnungen anzuwendende Berechnungsvorgang einzuschlagen sein. Dieser möge hier für den Bogen mit Kämpfergelenken kurz

Die Temperaturspannungen werden sonach im allgemeinen beträchtlich größer als bei dem Bogen mit Kämpfergelenken.

B. Gitter- oder Fachwerksbogen.

Die hierhergehörigen Fachwerksträger sind durch das Auftreten von horizontalen Auflagerkräften als Bogen, bzw. Hängewerke gekennzeichnet; sie bestehen immer aus zwei Gurtungen, von denen mindestens eine gekrümmt, bzw. polygonal ist und die durch eine Ausfachung (Gitterwerk) miteinander verbunden sind. Die Berechnung der Stabkräfte hat nach der allgemeinen Fachwerkstheorie zu geschehen, die von der vereinfachenden Annahme ausgeht, daß die Verbindung der Stäbe durch reibungslose Gelenke bewerkstelligt ist.

Sind die äußeren Kräfte, d. s. die Belastungen und die Auflagerkräfte, bekannt, so kann für


Abb. 242.
einen durch das Fachwerk geführten Schnitt die Resultierende der auf den abgetrennten Trägerteil einwirkenden äußeren Kräfte bestimmt werden (Abb. 242). Diese sei R, ihre Momente auf die Knotenpunkte o und u bezogen, seien M0 und Mu. Dann sind mit den Bezeichnungen der Abbildung die Gurtspannungen

Um die größten Werte dieser Gurtspannungen zu erhalten, hat man wieder die ungünstigste Belastung anzunehmen, die sich in ganz gleicher Weise wie hinsichtlich der Momente für den vollwandigen Bogenträger bestimmt (Abb. 234). Es treten nur an Stelle der Kernpunkte K1 und K2 die beiden Momentenpunkte u und o.

Die Spannungen der Gitterstäbe werden bei parallelen, bzw. konzentrischen Gurtungen aus den Querkräften erhalten. Bei nicht parallelen Gurtungen ist der Schnittpunkt der beiden dem betreffenden Fach angehörenden Gurtstäbe als Momentenpunkt anzusehen und folgt dann die Gitterstabspannung aus
S = Mz/d.

Die Größtwerte der Spannungen werden am besten mit Hilfe von Einflußlinien erhalten. Letztere sind identisch mit den Einflußlinien für die Momente Mo, Mu und Mz und bei einem gelenkig gelagerten Bogen aus der Einflußlinie des Horizontalschubes H leicht abzuleiten, analog wie bei Vollwandbogen (Abb. 240). In Abb. 243 ist in dieser Weise


Abb. 243.
die Einflußlinie der Stabkraft S des Ausfachungsstabes o, u dargestellt. Setzt man nämlich Mz = Mz – Hyz, so ist Die nach dem Kraftmaßstab der H-Linie gemessenen Ordinaten der in Abb. 243 schraffierten Fläche sind sonach noch mit yz/d zu multiplizieren.

Es erübrigt nun noch zu zeigen, wie die Auflagerkräfte zu berechnen sind, deren Kenntnis im vorhergehenden vorausgesetzt wurde. Bei einem Bogen mit gelenkiger Auflagerung handelt es sich nur um Bestimmung des Horizontalschubes, um Verzeichnung der H-Linie. Diese wird beim statisch bestimmten Dreigelenkbogen wie oben angegeben (Abb. 236) erhalten. Beim Zweigelenkbogen ist der Horizontalschub aus der elastischen Formänderung


Abb. 244.
abzuleiten. Hat der Bogen bei geringer Tragwandhöhe parallele Gurtungen (Abb. 244), sonach ein wenig veränderliches Trägheitsmoment, so kann mit ausreichender Annäherung dasselbe Berechnungsverfahren wie für vollwandige Bogen (Formel 16–36) in Anwendung gebracht werden. Sonst wird der überhaupt bei statisch unbestimmten Fachwerksanordnungen anzuwendende Berechnungsvorgang einzuschlagen sein. Dieser möge hier für den Bogen mit Kämpfergelenken kurz

<TEI>
  <text>
    <body>
      <div n="1">
        <div type="lexiconEntry" n="2">
          <pb facs="#f0464" n="452"/>
          <p>Die Temperaturspannungen werden sonach im allgemeinen beträchtlich größer als bei dem Bogen mit Kämpfergelenken.</p><lb/>
          <p> <hi rendition="#i">B. Gitter- oder Fachwerksbogen.</hi> </p><lb/>
          <p>Die hierhergehörigen Fachwerksträger sind durch das Auftreten von horizontalen Auflagerkräften als Bogen, bzw. Hängewerke gekennzeichnet; sie bestehen immer aus zwei Gurtungen, von denen mindestens eine gekrümmt, bzw. polygonal ist und die durch eine Ausfachung (Gitterwerk) miteinander verbunden sind. Die Berechnung der Stabkräfte hat nach der allgemeinen Fachwerkstheorie zu geschehen, die von der vereinfachenden Annahme ausgeht, daß die Verbindung der Stäbe durch reibungslose Gelenke bewerkstelligt ist.</p><lb/>
          <p>Sind die äußeren Kräfte, d. s. die Belastungen und die Auflagerkräfte, bekannt, so kann für<lb/><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen02_1912/figures/roell_eisenbahnwesen02_1912_figure-0381.jpg" rendition="#c"><head>Abb. 242.</head><lb/></figure><lb/>
einen durch das Fachwerk geführten Schnitt die Resultierende der auf den abgetrennten Trägerteil einwirkenden äußeren Kräfte bestimmt werden (Abb. 242). Diese sei <hi rendition="#i">R,</hi> ihre Momente auf die Knotenpunkte <hi rendition="#i">o</hi> und <hi rendition="#i">u</hi> bezogen, seien <hi rendition="#i">M<hi rendition="#sub">0</hi></hi> und <hi rendition="#i">M<hi rendition="#sub">u</hi>.</hi> Dann sind mit den Bezeichnungen der Abbildung die Gurtspannungen<lb/><formula facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen02_1912/figures/roell_eisenbahnwesen02_1912_figure-0452a.jpg" rendition="#c"/></p><lb/>
          <p>Um die größten Werte dieser Gurtspannungen zu erhalten, hat man wieder die ungünstigste Belastung anzunehmen, die sich in ganz gleicher Weise wie hinsichtlich der Momente für den vollwandigen Bogenträger bestimmt (Abb. 234). Es treten nur an Stelle der Kernpunkte <hi rendition="#i">K</hi><hi rendition="#sub">1</hi> und <hi rendition="#i">K</hi><hi rendition="#sub">2</hi> die beiden Momentenpunkte <hi rendition="#i">u</hi> und <hi rendition="#i">o.</hi></p><lb/>
          <p>Die Spannungen der Gitterstäbe werden bei parallelen, bzw. konzentrischen Gurtungen aus den Querkräften erhalten. Bei nicht parallelen Gurtungen ist der Schnittpunkt der beiden dem betreffenden Fach angehörenden Gurtstäbe als Momentenpunkt anzusehen und folgt dann die Gitterstabspannung aus<lb/><hi rendition="#c"><hi rendition="#i">S</hi> = <hi rendition="#i">M<hi rendition="#sub">z</hi></hi>/<hi rendition="#i">d</hi>.</hi></p><lb/>
          <p>Die Größtwerte der Spannungen werden am besten mit Hilfe von Einflußlinien erhalten. Letztere sind identisch mit den Einflußlinien für die Momente <hi rendition="#i">M<hi rendition="#sub">o</hi>, M<hi rendition="#sub">u</hi></hi> und <hi rendition="#i">M<hi rendition="#sub">z</hi></hi> und bei einem gelenkig gelagerten Bogen aus der Einflußlinie des Horizontalschubes <hi rendition="#i">H</hi> leicht abzuleiten, analog wie bei Vollwandbogen (Abb. 240). In Abb. 243 ist in dieser Weise<lb/><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen02_1912/figures/roell_eisenbahnwesen02_1912_figure-0382.jpg" rendition="#c"><head>Abb. 243.</head><lb/></figure><lb/>
die Einflußlinie der Stabkraft <hi rendition="#i">S</hi> des Ausfachungsstabes <hi rendition="#i">o, u</hi> dargestellt. Setzt man nämlich <hi rendition="#i">M<hi rendition="#sub">z</hi></hi> = <hi rendition="#f">M</hi><hi rendition="#i"><hi rendition="#sub">z</hi> &#x2013; Hy<hi rendition="#sub">z</hi>,</hi> so ist <formula facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen02_1912/figures/roell_eisenbahnwesen02_1912_figure-0452b.jpg"/> Die nach dem Kraftmaßstab der <hi rendition="#i">H</hi>-Linie gemessenen Ordinaten der in Abb. 243 schraffierten Fläche sind sonach noch mit <hi rendition="#i">y<hi rendition="#sub">z</hi></hi>/<hi rendition="#i">d</hi> zu multiplizieren.</p><lb/>
          <p>Es erübrigt nun noch zu zeigen, wie die Auflagerkräfte zu berechnen sind, deren Kenntnis im vorhergehenden vorausgesetzt wurde. Bei einem Bogen mit gelenkiger Auflagerung handelt es sich nur um Bestimmung des Horizontalschubes, um Verzeichnung der <hi rendition="#i">H</hi>-Linie. Diese wird beim statisch bestimmten Dreigelenkbogen wie oben angegeben (Abb. 236) erhalten. Beim Zweigelenkbogen ist der Horizontalschub aus der elastischen Formänderung<lb/><figure facs="https://media.dwds.de/dta/images/roell_eisenbahnwesen02_1912/figures/roell_eisenbahnwesen02_1912_figure-0383.jpg" rendition="#c"><head>Abb. 244.</head><lb/></figure><lb/>
abzuleiten. Hat der Bogen bei geringer Tragwandhöhe parallele Gurtungen (Abb. 244), sonach ein wenig veränderliches Trägheitsmoment, so kann mit ausreichender Annäherung dasselbe Berechnungsverfahren wie für vollwandige Bogen (Formel 16&#x2013;36) in Anwendung gebracht werden. Sonst wird der überhaupt bei statisch unbestimmten Fachwerksanordnungen anzuwendende Berechnungsvorgang einzuschlagen sein. Dieser möge hier für den Bogen mit Kämpfergelenken kurz
</p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[452/0464] Die Temperaturspannungen werden sonach im allgemeinen beträchtlich größer als bei dem Bogen mit Kämpfergelenken. B. Gitter- oder Fachwerksbogen. Die hierhergehörigen Fachwerksträger sind durch das Auftreten von horizontalen Auflagerkräften als Bogen, bzw. Hängewerke gekennzeichnet; sie bestehen immer aus zwei Gurtungen, von denen mindestens eine gekrümmt, bzw. polygonal ist und die durch eine Ausfachung (Gitterwerk) miteinander verbunden sind. Die Berechnung der Stabkräfte hat nach der allgemeinen Fachwerkstheorie zu geschehen, die von der vereinfachenden Annahme ausgeht, daß die Verbindung der Stäbe durch reibungslose Gelenke bewerkstelligt ist. Sind die äußeren Kräfte, d. s. die Belastungen und die Auflagerkräfte, bekannt, so kann für [Abbildung Abb. 242. ] einen durch das Fachwerk geführten Schnitt die Resultierende der auf den abgetrennten Trägerteil einwirkenden äußeren Kräfte bestimmt werden (Abb. 242). Diese sei R, ihre Momente auf die Knotenpunkte o und u bezogen, seien M0 und Mu. Dann sind mit den Bezeichnungen der Abbildung die Gurtspannungen [FORMEL] Um die größten Werte dieser Gurtspannungen zu erhalten, hat man wieder die ungünstigste Belastung anzunehmen, die sich in ganz gleicher Weise wie hinsichtlich der Momente für den vollwandigen Bogenträger bestimmt (Abb. 234). Es treten nur an Stelle der Kernpunkte K1 und K2 die beiden Momentenpunkte u und o. Die Spannungen der Gitterstäbe werden bei parallelen, bzw. konzentrischen Gurtungen aus den Querkräften erhalten. Bei nicht parallelen Gurtungen ist der Schnittpunkt der beiden dem betreffenden Fach angehörenden Gurtstäbe als Momentenpunkt anzusehen und folgt dann die Gitterstabspannung aus S = Mz/d. Die Größtwerte der Spannungen werden am besten mit Hilfe von Einflußlinien erhalten. Letztere sind identisch mit den Einflußlinien für die Momente Mo, Mu und Mz und bei einem gelenkig gelagerten Bogen aus der Einflußlinie des Horizontalschubes H leicht abzuleiten, analog wie bei Vollwandbogen (Abb. 240). In Abb. 243 ist in dieser Weise [Abbildung Abb. 243. ] die Einflußlinie der Stabkraft S des Ausfachungsstabes o, u dargestellt. Setzt man nämlich Mz = Mz – Hyz, so ist [FORMEL] Die nach dem Kraftmaßstab der H-Linie gemessenen Ordinaten der in Abb. 243 schraffierten Fläche sind sonach noch mit yz/d zu multiplizieren. Es erübrigt nun noch zu zeigen, wie die Auflagerkräfte zu berechnen sind, deren Kenntnis im vorhergehenden vorausgesetzt wurde. Bei einem Bogen mit gelenkiger Auflagerung handelt es sich nur um Bestimmung des Horizontalschubes, um Verzeichnung der H-Linie. Diese wird beim statisch bestimmten Dreigelenkbogen wie oben angegeben (Abb. 236) erhalten. Beim Zweigelenkbogen ist der Horizontalschub aus der elastischen Formänderung [Abbildung Abb. 244. ] abzuleiten. Hat der Bogen bei geringer Tragwandhöhe parallele Gurtungen (Abb. 244), sonach ein wenig veränderliches Trägheitsmoment, so kann mit ausreichender Annäherung dasselbe Berechnungsverfahren wie für vollwandige Bogen (Formel 16–36) in Anwendung gebracht werden. Sonst wird der überhaupt bei statisch unbestimmten Fachwerksanordnungen anzuwendende Berechnungsvorgang einzuschlagen sein. Dieser möge hier für den Bogen mit Kämpfergelenken kurz

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen …

zeno.org – Contumax GmbH & Co. KG: Bereitstellung der Texttranskription. (2020-06-17T17:32:49Z) Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Andreas Nolda: Bearbeitung der digitalen Edition. (2020-06-17T17:32:49Z)

Weitere Informationen:

Bogensignaturen: nicht übernommen; Druckfehler: keine Angabe; fremdsprachliches Material: keine Angabe; Geminations-/Abkürzungsstriche: keine Angabe; Hervorhebungen (Antiqua, Sperrschrift, Kursive etc.): gekennzeichnet; Hervorhebungen I/J in Fraktur: keine Angabe; i/j in Fraktur: keine Angabe; Kolumnentitel: nicht übernommen; Kustoden: keine Angabe; langes s (ſ): keine Angabe; Normalisierungen: keine Angabe; rundes r (ꝛ): keine Angabe; Seitenumbrüche markiert: ja; Silbentrennung: aufgelöst; u/v bzw. U/V: keine Angabe; Vokale mit übergest. e: keine Angabe; Vollständigkeit: keine Angabe; Zeichensetzung: keine Angabe; Zeilenumbrüche markiert: nein

Spaltenumbrüche sind nicht markiert. Wiederholungszeichen (") wurden aufgelöst. Komplexe Formeln und Tabellen sind als Grafiken wiedergegeben.

Die Abbildungen im Text stammen von zeno.org – Contumax GmbH & Co. KG.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/roell_eisenbahnwesen02_1912
URL zu dieser Seite: https://www.deutschestextarchiv.de/roell_eisenbahnwesen02_1912/464
Zitationshilfe: Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 2. Berlin, Wien, 1912, S. 452. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/roell_eisenbahnwesen02_1912/464>, abgerufen am 23.12.2024.