umschlagende Kapital von 500 £, und sie ist nur deshalb so gross, weil das einmal im Jahr umschlagende Kapital selbst zehnmal grösser ist als das zehnmal im Jahr umschlagende.
Das während des Jahres umgeschlagne variable Kapital -- also der Theil des jährlichen Produkts oder auch der jährlichen Verausgabung, der gleich diesem Theil -- ist das im Lauf des Jahrs wirklich angewandte, produktiv verzehrte variable Kapital. Es folgt daher, dass wenn das jähr- lich umgeschlagne variable Kapital A und das jährlich umgeschlagne variable Kapital B gleich gross und sie unter gleichen Verwerthungsbedingungen ange- wandt sind, die Rate des Mehrwerths also für beide dieselbe ist, auch die jähr- lich producirte Masse Mehrwerth für beide dieselbe sein muss; also auch -- da die angewandten Kapitalmassen dieselben -- die auf's Jahr be- rechnete Rate des Mehrwerths, soweit sie ausgedrückt wird durch:
[Formel 1]
. Oder allgemein ausgedrückt: Welches immer die relative Größe der umgeschlagnen variablen Kapitale, die Rate ihres im Jahreslauf producirten Mehrwerths ist bestimmt durch die Rate des Mehrwerths, wozu die respektiven Kapitale in durch- schnittlichen Perioden (z. B. im wöchentlichen oder auch Tagesdurchschnitt) gearbeitet haben.
Dies ist die einzige Konsequenz, welche aus den Gesetzen über die Produktion des Mehrwerths und über die Bestimmung der Rate des Mehr- werths folgt.
Sehn wir nun weiter zu, was das Verhältniss:
[Formel 2]
(wobei wir, wie gesagt, nur das variable Kapital in Betracht ziehn) ausdrückt. Die Division ergibt die Anzahl der Umschläge des in einem Jahr vorgeschossnen Kapitals.
Für Kapital A haben wir:
[Formel 3]
; für Kapital B:
[Formel 4]
.
In beiden Verhältnissen drückt der Zähler aus das vorgeschossne Kapital multiplicirt mit der Umschlagszahl; für A 500 x 10, für B
Marx, Kapital II. 19
umschlagende Kapital von 500 £, und sie ist nur deshalb so gross, weil das einmal im Jahr umschlagende Kapital selbst zehnmal grösser ist als das zehnmal im Jahr umschlagende.
Das während des Jahres umgeschlagne variable Kapital — also der Theil des jährlichen Produkts oder auch der jährlichen Verausgabung, der gleich diesem Theil — ist das im Lauf des Jahrs wirklich angewandte, produktiv verzehrte variable Kapital. Es folgt daher, dass wenn das jähr- lich umgeschlagne variable Kapital A und das jährlich umgeschlagne variable Kapital B gleich gross und sie unter gleichen Verwerthungsbedingungen ange- wandt sind, die Rate des Mehrwerths also für beide dieselbe ist, auch die jähr- lich producirte Masse Mehrwerth für beide dieselbe sein muss; also auch — da die angewandten Kapitalmassen dieselben — die auf’s Jahr be- rechnete Rate des Mehrwerths, soweit sie ausgedrückt wird durch:
[Formel 1]
. Oder allgemein ausgedrückt: Welches immer die relative Größe der umgeschlagnen variablen Kapitale, die Rate ihres im Jahreslauf producirten Mehrwerths ist bestimmt durch die Rate des Mehrwerths, wozu die respektiven Kapitale in durch- schnittlichen Perioden (z. B. im wöchentlichen oder auch Tagesdurchschnitt) gearbeitet haben.
Dies ist die einzige Konsequenz, welche aus den Gesetzen über die Produktion des Mehrwerths und über die Bestimmung der Rate des Mehr- werths folgt.
Sehn wir nun weiter zu, was das Verhältniss:
[Formel 2]
(wobei wir, wie gesagt, nur das variable Kapital in Betracht ziehn) ausdrückt. Die Division ergibt die Anzahl der Umschläge des in einem Jahr vorgeschossnen Kapitals.
Für Kapital A haben wir:
[Formel 3]
; für Kapital B:
[Formel 4]
.
In beiden Verhältnissen drückt der Zähler aus das vorgeschossne Kapital multiplicirt mit der Umschlagszahl; für A 500 × 10, für B
Marx, Kapital II. 19
<TEI><text><body><divn="1"><divn="2"><divn="3"><divn="4"><p><pbfacs="#f0323"n="289"/>
umschlagende Kapital von 500 <hirendition="#i">£</hi>, und sie ist nur deshalb so gross,<lb/>
weil das einmal im Jahr umschlagende Kapital selbst zehnmal grösser<lb/>
ist als das zehnmal im Jahr umschlagende.</p><lb/><p>Das während des Jahres umgeschlagne variable Kapital — also der<lb/>
Theil des jährlichen Produkts oder auch der jährlichen Verausgabung, der<lb/>
gleich diesem Theil — ist das im Lauf des Jahrs wirklich angewandte,<lb/>
produktiv verzehrte variable Kapital. Es folgt daher, dass wenn das jähr-<lb/>
lich umgeschlagne variable Kapital A und das jährlich umgeschlagne variable<lb/>
Kapital B gleich gross und sie unter gleichen Verwerthungsbedingungen ange-<lb/>
wandt sind, die Rate des Mehrwerths also für beide dieselbe ist, auch die jähr-<lb/>
lich producirte Masse Mehrwerth für beide dieselbe sein muss; also auch<lb/>— da die angewandten Kapitalmassen dieselben — die auf’s Jahr be-<lb/>
rechnete Rate des Mehrwerths, soweit sie ausgedrückt wird durch:<lb/><formula/>. Oder allgemein ausgedrückt:<lb/>
Welches immer die relative Größe der umgeschlagnen variablen Kapitale,<lb/>
die Rate ihres im Jahreslauf producirten Mehrwerths ist bestimmt<lb/>
durch die Rate des Mehrwerths, wozu die respektiven Kapitale in durch-<lb/>
schnittlichen Perioden (z. B. im wöchentlichen oder auch Tagesdurchschnitt)<lb/>
gearbeitet haben.</p><lb/><p>Dies ist die einzige Konsequenz, welche aus den Gesetzen über die<lb/>
Produktion des Mehrwerths und über die Bestimmung der Rate des Mehr-<lb/>
werths folgt.</p><lb/><p>Sehn wir nun weiter zu, was das Verhältniss:<lb/><formula/> (wobei wir, wie gesagt, nur das variable<lb/>
Kapital in Betracht ziehn) ausdrückt. Die Division ergibt die Anzahl der<lb/>
Umschläge des in einem Jahr vorgeschossnen Kapitals.</p><lb/><p>Für Kapital A haben wir:<lb/><formula/>; für Kapital B:<lb/><formula/>.</p><lb/><p>In beiden Verhältnissen drückt der Zähler aus das vorgeschossne<lb/>
Kapital multiplicirt mit der Umschlag<hirendition="#g">szahl</hi>; für A 500 × 10, für B<lb/><fwplace="bottom"type="sig"><hirendition="#g">Marx</hi>, Kapital II. 19</fw><lb/></p></div></div></div></div></body></text></TEI>
[289/0323]
umschlagende Kapital von 500 £, und sie ist nur deshalb so gross,
weil das einmal im Jahr umschlagende Kapital selbst zehnmal grösser
ist als das zehnmal im Jahr umschlagende.
Das während des Jahres umgeschlagne variable Kapital — also der
Theil des jährlichen Produkts oder auch der jährlichen Verausgabung, der
gleich diesem Theil — ist das im Lauf des Jahrs wirklich angewandte,
produktiv verzehrte variable Kapital. Es folgt daher, dass wenn das jähr-
lich umgeschlagne variable Kapital A und das jährlich umgeschlagne variable
Kapital B gleich gross und sie unter gleichen Verwerthungsbedingungen ange-
wandt sind, die Rate des Mehrwerths also für beide dieselbe ist, auch die jähr-
lich producirte Masse Mehrwerth für beide dieselbe sein muss; also auch
— da die angewandten Kapitalmassen dieselben — die auf’s Jahr be-
rechnete Rate des Mehrwerths, soweit sie ausgedrückt wird durch:
[FORMEL]. Oder allgemein ausgedrückt:
Welches immer die relative Größe der umgeschlagnen variablen Kapitale,
die Rate ihres im Jahreslauf producirten Mehrwerths ist bestimmt
durch die Rate des Mehrwerths, wozu die respektiven Kapitale in durch-
schnittlichen Perioden (z. B. im wöchentlichen oder auch Tagesdurchschnitt)
gearbeitet haben.
Dies ist die einzige Konsequenz, welche aus den Gesetzen über die
Produktion des Mehrwerths und über die Bestimmung der Rate des Mehr-
werths folgt.
Sehn wir nun weiter zu, was das Verhältniss:
[FORMEL] (wobei wir, wie gesagt, nur das variable
Kapital in Betracht ziehn) ausdrückt. Die Division ergibt die Anzahl der
Umschläge des in einem Jahr vorgeschossnen Kapitals.
Für Kapital A haben wir:
[FORMEL]; für Kapital B:
[FORMEL].
In beiden Verhältnissen drückt der Zähler aus das vorgeschossne
Kapital multiplicirt mit der Umschlagszahl; für A 500 × 10, für B
Marx, Kapital II. 19
Informationen zur CAB-Ansicht
Diese Ansicht bietet Ihnen die Darstellung des Textes in normalisierter Orthographie.
Diese Textvariante wird vollautomatisch erstellt und kann aufgrund dessen auch Fehler enthalten.
Alle veränderten Wortformen sind grau hinterlegt. Als fremdsprachliches Material erkannte
Textteile sind ausgegraut dargestellt.
Marx, Karl: Das Kapital. Bd. 2. Buch II: Der Cirkulationsprocess des Kapitals. Hamburg, 1885, S. 289. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/marx_kapital02_1885/323>, abgerufen am 22.11.2024.
Alle Inhalte dieser Seite unterstehen, soweit nicht anders gekennzeichnet, einer
Creative-Commons-Lizenz.
Die Rechte an den angezeigten Bilddigitalisaten, soweit nicht anders gekennzeichnet, liegen bei den besitzenden Bibliotheken.
Weitere Informationen finden Sie in den DTA-Nutzungsbedingungen.
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf
diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken
dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder
nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der
Herabwürdigung der Menschenwürde gezeigt werden.
Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des
§ 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen
Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung
der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu
vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
Zitierempfehlung: Deutsches Textarchiv. Grundlage für ein Referenzkorpus der neuhochdeutschen Sprache. Herausgegeben von der Berlin-Brandenburgischen Akademie der Wissenschaften, Berlin 2024. URL: https://www.deutschestextarchiv.de/.