Mach, Ernst: Die Mechanik in ihrer Entwicklung. Leipzig, 1883.Die weitere Verwendung der Principien u. s. w. q Längeneinheiten in der Zeiteinheit zurückgelegt werden.Dann könnten wir aber die Beziehung zwischen der Zeit t, dem Wege s und der Geschwindigkeit v nicht in der ge- bräuchlichen einfachen Form s=vt schreiben, sondern müssten sie durch s=q·vt ersetzen. Definiren wiraber die Geschwindigkeitseinheit als diejenige Geschwindigkeit, durch welche die Längeneinheit in der Zeiteinheit zurück- gelegt wird, so können wir die Form s=vt beibehalten. Man wühlt die abgeleiteten Einheiten so, dass die ein- fachsten Beziehungen derselben untereinander hervor- gehen. So wurde z. B. als Flächen- und Volumeinheit immer das Quadrat und der Würfel über der Längen- einheit als Seite gebraucht. Halten wir das angedeutete Princip fest, so nehmen Die abgeleiteten Einheiten hängen von den willkür- Dimension Geschwindigkeit v ... lt--1 Beschleunigung [ph] ... lt--2 Kraft p ... mlt--2 Bewegungsgrösse mv ... mlt--1 Antrieb pt ... mlt--1 Die weitere Verwendung der Principien u. s. w. q Längeneinheiten in der Zeiteinheit zurückgelegt werden.Dann könnten wir aber die Beziehung zwischen der Zeit t, dem Wege s und der Geschwindigkeit v nicht in der ge- bräuchlichen einfachen Form s=vt schreiben, sondern müssten sie durch s=q·vt ersetzen. Definiren wiraber die Geschwindigkeitseinheit als diejenige Geschwindigkeit, durch welche die Längeneinheit in der Zeiteinheit zurück- gelegt wird, so können wir die Form s=vt beibehalten. Man wühlt die abgeleiteten Einheiten so, dass die ein- fachsten Beziehungen derselben untereinander hervor- gehen. So wurde z. B. als Flächen- und Volumeinheit immer das Quadrat und der Würfel über der Längen- einheit als Seite gebraucht. Halten wir das angedeutete Princip fest, so nehmen Die abgeleiteten Einheiten hängen von den willkür- Dimension Geschwindigkeit v … lt—1 Beschleunigung [φ] … lt—2 Kraft p … mlt—2 Bewegungsgrösse mv … mlt—1 Antrieb pt … mlt—1 <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0273" n="261"/><fw place="top" type="header">Die weitere Verwendung der Principien u. s. w.</fw><lb/><hi rendition="#i">q</hi> Längeneinheiten in der Zeiteinheit zurückgelegt werden.<lb/> Dann könnten wir aber die Beziehung zwischen der Zeit <hi rendition="#i">t</hi>,<lb/> dem Wege <hi rendition="#i">s</hi> und der Geschwindigkeit <hi rendition="#i">v</hi> nicht in der ge-<lb/> bräuchlichen einfachen Form <hi rendition="#g"><hi rendition="#i">s=vt</hi></hi> schreiben, sondern<lb/> müssten sie durch <hi rendition="#g"><hi rendition="#i">s=q·vt</hi></hi> ersetzen. Definiren wiraber<lb/> die Geschwindigkeitseinheit als diejenige Geschwindigkeit,<lb/> durch welche die Längeneinheit in der Zeiteinheit zurück-<lb/> gelegt wird, so können wir die Form <hi rendition="#g"><hi rendition="#i">s=vt</hi></hi> beibehalten.<lb/> Man wühlt die abgeleiteten Einheiten so, dass die ein-<lb/> fachsten Beziehungen derselben untereinander hervor-<lb/> gehen. So wurde z. B. als Flächen- und Volumeinheit<lb/> immer das Quadrat und der Würfel über der Längen-<lb/> einheit als Seite gebraucht.</p><lb/> <p>Halten wir das angedeutete Princip fest, so nehmen<lb/> wir also an, dass durch die Geschwindigkeitseinheit die<lb/> Längeneinheit in der Zeiteinheit zurückgelegt wird, dass<lb/> durch die Einheit der Beschleunigung die Geschwindig-<lb/> keitseinheit in der Zeiteinheit zuwächst, dass durch die<lb/> Krafteinheit der Masseneinheit die Einheit der Be-<lb/> schleunigung ertheilt wird u. s. w.</p><lb/> <p>Die abgeleiteten Einheiten hängen von den willkür-<lb/> lichen Grundeinheiten ab, sie sind Functionen derselben.<lb/> Wir wollen die einer abgeleiteten Einheit entsprechende<lb/> Function die <hi rendition="#g">Dimension</hi> derselben nennen. Die Lehre<lb/> von den Dimensionen ist von Fourier (1822) in seiner<lb/> Wärmetheorie begründet worden. Bezeichnen wir eine<lb/> Länge mit <hi rendition="#i">l</hi>, eine Zeit mit <hi rendition="#i">t</hi>, eine Masse mit <hi rendition="#i">m</hi>, so ist<lb/> z. B. die Dimension einer Geschwindigkeit <formula notation="TeX"> \frac {l}{t}</formula> oder <hi rendition="#g"><hi rendition="#i">lt</hi><hi rendition="#sup">—1</hi></hi>.<lb/> Die folgende Tabelle ist hiernach ohne Schwierigkeit ver-<lb/> ständlich:</p><lb/> <list> <item> <hi rendition="#et">Dimension</hi> </item><lb/> <item>Geschwindigkeit <hi rendition="#g"><hi rendition="#i">v … lt</hi><hi rendition="#sup">—1</hi></hi></item><lb/> <item>Beschleunigung <hi rendition="#g"><supplied>φ</supplied> … <hi rendition="#i">lt</hi><hi rendition="#sup">—2</hi></hi></item><lb/> <item>Kraft <hi rendition="#g"><hi rendition="#i">p … mlt</hi><hi rendition="#sup">—2</hi></hi></item><lb/> <item>Bewegungsgrösse <hi rendition="#g"><hi rendition="#i">mv … mlt</hi><hi rendition="#sup">—1</hi></hi></item><lb/> <item>Antrieb <hi rendition="#g"><hi rendition="#i">pt … mlt</hi><hi rendition="#sup">—1</hi></hi></item> </list><lb/> </div> </div> </body> </text> </TEI> [261/0273]
Die weitere Verwendung der Principien u. s. w.
q Längeneinheiten in der Zeiteinheit zurückgelegt werden.
Dann könnten wir aber die Beziehung zwischen der Zeit t,
dem Wege s und der Geschwindigkeit v nicht in der ge-
bräuchlichen einfachen Form s=vt schreiben, sondern
müssten sie durch s=q·vt ersetzen. Definiren wiraber
die Geschwindigkeitseinheit als diejenige Geschwindigkeit,
durch welche die Längeneinheit in der Zeiteinheit zurück-
gelegt wird, so können wir die Form s=vt beibehalten.
Man wühlt die abgeleiteten Einheiten so, dass die ein-
fachsten Beziehungen derselben untereinander hervor-
gehen. So wurde z. B. als Flächen- und Volumeinheit
immer das Quadrat und der Würfel über der Längen-
einheit als Seite gebraucht.
Halten wir das angedeutete Princip fest, so nehmen
wir also an, dass durch die Geschwindigkeitseinheit die
Längeneinheit in der Zeiteinheit zurückgelegt wird, dass
durch die Einheit der Beschleunigung die Geschwindig-
keitseinheit in der Zeiteinheit zuwächst, dass durch die
Krafteinheit der Masseneinheit die Einheit der Be-
schleunigung ertheilt wird u. s. w.
Die abgeleiteten Einheiten hängen von den willkür-
lichen Grundeinheiten ab, sie sind Functionen derselben.
Wir wollen die einer abgeleiteten Einheit entsprechende
Function die Dimension derselben nennen. Die Lehre
von den Dimensionen ist von Fourier (1822) in seiner
Wärmetheorie begründet worden. Bezeichnen wir eine
Länge mit l, eine Zeit mit t, eine Masse mit m, so ist
z. B. die Dimension einer Geschwindigkeit [FORMEL] oder lt—1.
Die folgende Tabelle ist hiernach ohne Schwierigkeit ver-
ständlich:
Dimension
Geschwindigkeit v … lt—1
Beschleunigung φ … lt—2
Kraft p … mlt—2
Bewegungsgrösse mv … mlt—1
Antrieb pt … mlt—1
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |