Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Laßwitz, Kurd: Geschichte der Atomistik. Bd. 1. Hamburg, 1890.

Bild:
<< vorherige Seite

Mutakallimun: Einfluß von Aristoteles.
Weise dürften während des Mittelalters Gedanken in manchem
Leser des More Nevochim angeregt worden sein, die, wenn sie
auch nicht zu öffentlichem oder systematischem Ausdruck
kamen, doch bei der inneren Abwägung der philosophischen
Theorien nicht ganz ohne Einfluß geblieben sein werden.

3. Das Kontinuitätsproblem und die Mutakallimun.

Die Atomistik der Mutakallimun bildet eine Illustration
zu der Gegnerschaft des Aristoteles gegen Demokrit und ist
zugleich ein naturgemäßer Ausfluß aus derselben. Sie ist der
Versuch einen Einwand zu vermeiden, welcher die Atomistik
Demokrits gar nicht trifft. Denn offenbar ist sie entstanden
durch den Vorwurf, welchen Aristoteles dem Demokrit macht,1
indem er nachweist, daß die Kontinuität der Bewegung die
der Raum- und Zeitgröße voraussetze. Er führt dort aus, daß
die Diskontinuierlichkeit einer dieser Größen die der beiden
andern zur Folge haben müsse. Da nun die Mutakallimun den
Raum atomistisch faßten, so sahen sie sich genötigt, auch Zeit
und Bewegung folgerecht als unstetig anzusehen.2 Auf diese
Weise fanden sie sich zwar mit der Mechanik in einer Hin-
sicht nicht ungeschickt ab, aber sie gerieten allerdings in Wider-
spruch mit der Mathematik.

Die Einwände des Aristoteles gegen das Bestehen des
Kontinuums aus Unteilbarem sind ja unumstößlich, soweit
sie sich auf das rein Mathematische beziehen; der Raum be-
steht nicht aus Punkten; aber diese Einwendungen konnten
nichts gegen Demokrit sagen, lo lange die Unmöglichkeit des
leeren Raumes nicht ebenso scharf bewiesen werden konnte.
Demokrit ist es nicht eingefallen, den Raum aus Punkten
bestehen zu lassen, sondern er setzte nur den physischen
Körper aus Atomen und Poren zusammen, wobei die Atome
nicht punktuell, sondern endlich ausgedehnt sind. Insbesondere
Epikur hatte diese bloß physische Unteilbarkeit der Atome

1 S. S. 104, 105.
2 Als Erfinder dieser Lehre vom "Sprung" (tafra) gilt An-Natztzam,
der Begründer der nach ihm benannten mutazilitischen Schule der Natztzamija.
S. Haarbrücker, Schahrastani S. 56. Dugat, p. 103.

Mutakallimun: Einfluß von Aristoteles.
Weise dürften während des Mittelalters Gedanken in manchem
Leser des More Nevochim angeregt worden sein, die, wenn sie
auch nicht zu öffentlichem oder systematischem Ausdruck
kamen, doch bei der inneren Abwägung der philosophischen
Theorien nicht ganz ohne Einfluß geblieben sein werden.

3. Das Kontinuitätsproblem und die Mutakallimun.

Die Atomistik der Mutakallimun bildet eine Illustration
zu der Gegnerschaft des Aristoteles gegen Demokrit und ist
zugleich ein naturgemäßer Ausfluß aus derselben. Sie ist der
Versuch einen Einwand zu vermeiden, welcher die Atomistik
Demokrits gar nicht trifft. Denn offenbar ist sie entstanden
durch den Vorwurf, welchen Aristoteles dem Demokrit macht,1
indem er nachweist, daß die Kontinuität der Bewegung die
der Raum- und Zeitgröße voraussetze. Er führt dort aus, daß
die Diskontinuierlichkeit einer dieser Größen die der beiden
andern zur Folge haben müsse. Da nun die Mutakallimun den
Raum atomistisch faßten, so sahen sie sich genötigt, auch Zeit
und Bewegung folgerecht als unstetig anzusehen.2 Auf diese
Weise fanden sie sich zwar mit der Mechanik in einer Hin-
sicht nicht ungeschickt ab, aber sie gerieten allerdings in Wider-
spruch mit der Mathematik.

Die Einwände des Aristoteles gegen das Bestehen des
Kontinuums aus Unteilbarem sind ja unumstößlich, soweit
sie sich auf das rein Mathematische beziehen; der Raum be-
steht nicht aus Punkten; aber diese Einwendungen konnten
nichts gegen Demokrit sagen, lo lange die Unmöglichkeit des
leeren Raumes nicht ebenso scharf bewiesen werden konnte.
Demokrit ist es nicht eingefallen, den Raum aus Punkten
bestehen zu lassen, sondern er setzte nur den physischen
Körper aus Atomen und Poren zusammen, wobei die Atome
nicht punktuell, sondern endlich ausgedehnt sind. Insbesondere
Epikur hatte diese bloß physische Unteilbarkeit der Atome

1 S. S. 104, 105.
2 Als Erfinder dieser Lehre vom „Sprung‟ (tafra) gilt An-Natztzam,
der Begründer der nach ihm benannten mutazilitischen Schule der Natztzamija.
S. Haarbrücker, Schahrastani S. 56. Dugat, p. 103.
<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <div n="3">
            <p><pb facs="#f0164" n="146"/><fw place="top" type="header">Mutakallimun: Einfluß von <hi rendition="#k">Aristoteles</hi>.</fw><lb/>
Weise dürften während des Mittelalters Gedanken in manchem<lb/>
Leser des <hi rendition="#i">More Nevochim</hi> angeregt worden sein, die, wenn sie<lb/>
auch nicht zu öffentlichem oder systematischem Ausdruck<lb/>
kamen, doch bei der inneren Abwägung der philosophischen<lb/>
Theorien nicht ganz ohne Einfluß geblieben sein werden.</p>
          </div><lb/>
          <div n="3">
            <head> <hi rendition="#b">3. Das Kontinuitätsproblem und die Mutakallimun.</hi> </head><lb/>
            <p>Die Atomistik der Mutakallimun bildet eine Illustration<lb/>
zu der Gegnerschaft des <hi rendition="#k">Aristoteles</hi> gegen <hi rendition="#k">Demokrit</hi> und ist<lb/>
zugleich ein naturgemäßer Ausfluß aus derselben. Sie ist der<lb/>
Versuch einen Einwand zu vermeiden, welcher die Atomistik<lb/><hi rendition="#k">Demokrits</hi> gar nicht trifft. Denn offenbar ist sie entstanden<lb/>
durch den Vorwurf, welchen <hi rendition="#k">Aristoteles</hi> dem <hi rendition="#k">Demokrit</hi> macht,<note place="foot" n="1">S. S. 104, 105.</note><lb/>
indem er nachweist, daß die Kontinuität der Bewegung die<lb/>
der Raum- und Zeitgröße voraussetze. Er führt dort aus, daß<lb/>
die Diskontinuierlichkeit einer dieser Größen die der beiden<lb/>
andern zur Folge haben müsse. Da nun die Mutakallimun den<lb/>
Raum atomistisch faßten, so sahen sie sich genötigt, auch Zeit<lb/>
und Bewegung folgerecht als unstetig anzusehen.<note place="foot" n="2">Als Erfinder dieser Lehre vom &#x201E;Sprung&#x201F; (<hi rendition="#i">tafra</hi>) gilt <hi rendition="#k">An-Natztzam</hi>,<lb/>
der Begründer der nach ihm benannten mutazilitischen Schule der Natztzamija.<lb/>
S. <hi rendition="#k">Haarbrücker</hi>, <hi rendition="#i">Schahrastani</hi> S. 56. <hi rendition="#k">Dugat</hi>, p. 103.</note> Auf diese<lb/>
Weise fanden sie sich zwar mit der Mechanik in einer Hin-<lb/>
sicht nicht ungeschickt ab, aber sie gerieten allerdings in Wider-<lb/>
spruch mit der Mathematik.</p><lb/>
            <p>Die Einwände des <hi rendition="#k">Aristoteles</hi> gegen das Bestehen des<lb/>
Kontinuums aus Unteilbarem sind ja unumstößlich, soweit<lb/>
sie sich auf das rein Mathematische beziehen; der Raum be-<lb/>
steht nicht aus Punkten; aber diese Einwendungen konnten<lb/>
nichts gegen <hi rendition="#k">Demokrit</hi> sagen, lo lange die Unmöglichkeit des<lb/>
leeren Raumes nicht ebenso scharf bewiesen werden konnte.<lb/><hi rendition="#k">Demokrit</hi> ist es nicht eingefallen, den Raum aus Punkten<lb/>
bestehen zu lassen, sondern er setzte nur den physischen<lb/>
Körper aus Atomen und Poren zusammen, wobei die Atome<lb/>
nicht punktuell, sondern endlich ausgedehnt sind. Insbesondere<lb/><hi rendition="#k">Epikur</hi> hatte diese bloß physische Unteilbarkeit der Atome<lb/></p>
          </div>
        </div>
      </div>
    </body>
  </text>
</TEI>
[146/0164] Mutakallimun: Einfluß von Aristoteles. Weise dürften während des Mittelalters Gedanken in manchem Leser des More Nevochim angeregt worden sein, die, wenn sie auch nicht zu öffentlichem oder systematischem Ausdruck kamen, doch bei der inneren Abwägung der philosophischen Theorien nicht ganz ohne Einfluß geblieben sein werden. 3. Das Kontinuitätsproblem und die Mutakallimun. Die Atomistik der Mutakallimun bildet eine Illustration zu der Gegnerschaft des Aristoteles gegen Demokrit und ist zugleich ein naturgemäßer Ausfluß aus derselben. Sie ist der Versuch einen Einwand zu vermeiden, welcher die Atomistik Demokrits gar nicht trifft. Denn offenbar ist sie entstanden durch den Vorwurf, welchen Aristoteles dem Demokrit macht, 1 indem er nachweist, daß die Kontinuität der Bewegung die der Raum- und Zeitgröße voraussetze. Er führt dort aus, daß die Diskontinuierlichkeit einer dieser Größen die der beiden andern zur Folge haben müsse. Da nun die Mutakallimun den Raum atomistisch faßten, so sahen sie sich genötigt, auch Zeit und Bewegung folgerecht als unstetig anzusehen. 2 Auf diese Weise fanden sie sich zwar mit der Mechanik in einer Hin- sicht nicht ungeschickt ab, aber sie gerieten allerdings in Wider- spruch mit der Mathematik. Die Einwände des Aristoteles gegen das Bestehen des Kontinuums aus Unteilbarem sind ja unumstößlich, soweit sie sich auf das rein Mathematische beziehen; der Raum be- steht nicht aus Punkten; aber diese Einwendungen konnten nichts gegen Demokrit sagen, lo lange die Unmöglichkeit des leeren Raumes nicht ebenso scharf bewiesen werden konnte. Demokrit ist es nicht eingefallen, den Raum aus Punkten bestehen zu lassen, sondern er setzte nur den physischen Körper aus Atomen und Poren zusammen, wobei die Atome nicht punktuell, sondern endlich ausgedehnt sind. Insbesondere Epikur hatte diese bloß physische Unteilbarkeit der Atome 1 S. S. 104, 105. 2 Als Erfinder dieser Lehre vom „Sprung‟ (tafra) gilt An-Natztzam, der Begründer der nach ihm benannten mutazilitischen Schule der Natztzamija. S. Haarbrücker, Schahrastani S. 56. Dugat, p. 103.

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/lasswitz_atom01_1890
URL zu dieser Seite: https://www.deutschestextarchiv.de/lasswitz_atom01_1890/164
Zitationshilfe: Laßwitz, Kurd: Geschichte der Atomistik. Bd. 1. Hamburg, 1890, S. 146. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/lasswitz_atom01_1890/164>, abgerufen am 26.11.2024.