§ 11. Kritische Temperatur, kritischer Druck und kritisches Volumen.
Wir wollen nun die durch die Formel 22) dargestellte Relation zwischen dem Drucke, der Temperatur und dem speci- fischen Volumen eingehender discutiren. Nach derselben wird für jede Temperatur T für v = b der Druck unendlich. Wie wir sahen, würde für eine Substanz, welche exact den Waals'- schen Annahmen genügt, der Druck erst etwa für das Volumen 1/3 b unendlich. Doch wollen wir hierauf nicht näher eingehen, da nicht die ursprünglichen Annahmen van der Waals', sondern lediglich die Gleichung 22), insofern sie für grössere v ein angenähert richtiger, für kleinere ein wenigstens qualitativ übereinstimmender Ausdruck derselben ist, das Object unserer gegenwärtigen Untersuchung bildet.
Das Volumen v = b ist daher unmöglich; um so mehr jeder kleinere Werth von v, da für einen stabilen Gleich- gewichtszustand durch Verkleinerung von v der Druck noch weiter, also noch über den Werth infinity hinaus, wachsen müsste.
Wir wollen nun die Isotherme, d. h. die Beziehung auf- suchen, welche zwischen Druck und Volumen besteht, wenn die Substanz ihr Volumen bei constanter Temperatur ändert. Da bei einer solchen Volumänderung T als constant zu be- trachten ist, so folgt aus Gleichung 22) 27)
[Formel 1]
.
Hier ist die rechte Seite für den kleinsten möglichen Werth des v, der nur wenig grösser als b ist, negativ, ebenso für sehr grosse Werthe des v. Ferner ändert sie sich, sowie ihre Differentialquotienten nach v für alle in Betracht kommenden Werthe des v continuirlich mit der letzteren Grösse. Die rechte Seite der Gleichung 27) kann nur verschwinden für
[Formel 2]
. In dieser Gleichung hat der Ausdruck rechts für Werthe des v, die wenig grösser als b sind, sowie für sehr grosse Werthe des v einen sehr kleinen positiven Werth. Er ist ferner zwischen diesen Grenzen continuirlich und hat innerhalb derselben nur ein einziges Maximum vom Betrage Tk = 8 a / 27 r b für v = 3 b.
[Gleich. 27] § 11. Kritische Grössen.
§ 11. Kritische Temperatur, kritischer Druck und kritisches Volumen.
Wir wollen nun die durch die Formel 22) dargestellte Relation zwischen dem Drucke, der Temperatur und dem speci- fischen Volumen eingehender discutiren. Nach derselben wird für jede Temperatur T für v = b der Druck unendlich. Wie wir sahen, würde für eine Substanz, welche exact den Waals’- schen Annahmen genügt, der Druck erst etwa für das Volumen ⅓ b unendlich. Doch wollen wir hierauf nicht näher eingehen, da nicht die ursprünglichen Annahmen van der Waals’, sondern lediglich die Gleichung 22), insofern sie für grössere v ein angenähert richtiger, für kleinere ein wenigstens qualitativ übereinstimmender Ausdruck derselben ist, das Object unserer gegenwärtigen Untersuchung bildet.
Das Volumen v = b ist daher unmöglich; um so mehr jeder kleinere Werth von v, da für einen stabilen Gleich- gewichtszustand durch Verkleinerung von v der Druck noch weiter, also noch über den Werth ∞ hinaus, wachsen müsste.
Wir wollen nun die Isotherme, d. h. die Beziehung auf- suchen, welche zwischen Druck und Volumen besteht, wenn die Substanz ihr Volumen bei constanter Temperatur ändert. Da bei einer solchen Volumänderung T als constant zu be- trachten ist, so folgt aus Gleichung 22) 27)
[Formel 1]
.
Hier ist die rechte Seite für den kleinsten möglichen Werth des v, der nur wenig grösser als b ist, negativ, ebenso für sehr grosse Werthe des v. Ferner ändert sie sich, sowie ihre Differentialquotienten nach v für alle in Betracht kommenden Werthe des v continuirlich mit der letzteren Grösse. Die rechte Seite der Gleichung 27) kann nur verschwinden für
[Formel 2]
. In dieser Gleichung hat der Ausdruck rechts für Werthe des v, die wenig grösser als b sind, sowie für sehr grosse Werthe des v einen sehr kleinen positiven Werth. Er ist ferner zwischen diesen Grenzen continuirlich und hat innerhalb derselben nur ein einziges Maximum vom Betrage Tk = 8 a / 27 r b für v = 3 b.
<TEI><text><body><divn="1"><pbfacs="#f0041"n="23"/><fwplace="top"type="header">[Gleich. 27] § 11. Kritische Grössen.</fw><lb/><divn="2"><head>§ 11. <hirendition="#g">Kritische Temperatur, kritischer Druck und<lb/>
kritisches Volumen</hi>.</head><lb/><p>Wir wollen nun die durch die Formel 22) dargestellte<lb/>
Relation zwischen dem Drucke, der Temperatur und dem speci-<lb/>
fischen Volumen eingehender discutiren. Nach derselben wird<lb/>
für jede Temperatur <hirendition="#i">T</hi> für <hirendition="#i">v = b</hi> der Druck unendlich. Wie<lb/>
wir sahen, würde für eine Substanz, welche exact den <hirendition="#g">Waals’</hi>-<lb/>
schen Annahmen genügt, der Druck erst etwa für das Volumen<lb/>⅓<hirendition="#i">b</hi> unendlich. Doch wollen wir hierauf nicht näher eingehen,<lb/>
da nicht die ursprünglichen Annahmen <hirendition="#g">van der Waals’</hi>,<lb/>
sondern lediglich die Gleichung 22), insofern sie für grössere <hirendition="#i">v</hi><lb/>
ein angenähert richtiger, für kleinere ein wenigstens qualitativ<lb/>
übereinstimmender Ausdruck derselben ist, das Object unserer<lb/>
gegenwärtigen Untersuchung bildet.</p><lb/><p>Das Volumen <hirendition="#i">v = b</hi> ist daher unmöglich; um so mehr<lb/>
jeder kleinere Werth von <hirendition="#i">v</hi>, da für einen stabilen Gleich-<lb/>
gewichtszustand durch Verkleinerung von <hirendition="#i">v</hi> der Druck noch<lb/>
weiter, also noch über den Werth ∞ hinaus, wachsen müsste.</p><lb/><p>Wir wollen nun die Isotherme, d. h. die Beziehung auf-<lb/>
suchen, welche zwischen Druck und Volumen besteht, wenn<lb/>
die Substanz ihr Volumen bei constanter Temperatur ändert.<lb/>
Da bei einer solchen Volumänderung <hirendition="#i">T</hi> als constant zu be-<lb/>
trachten ist, so folgt aus Gleichung 22)<lb/>
27) <hirendition="#et"><formula/>.</hi></p><lb/><p>Hier ist die rechte Seite für den kleinsten möglichen Werth<lb/>
des <hirendition="#i">v</hi>, der nur wenig grösser als <hirendition="#i">b</hi> ist, negativ, ebenso für sehr<lb/>
grosse Werthe des <hirendition="#i">v</hi>. Ferner ändert sie sich, sowie ihre<lb/>
Differentialquotienten nach <hirendition="#i">v</hi> für alle in Betracht kommenden<lb/>
Werthe des <hirendition="#i">v</hi> continuirlich mit der letzteren Grösse. Die<lb/>
rechte Seite der Gleichung 27) kann nur verschwinden für<lb/><hirendition="#c"><formula/>.</hi><lb/>
In dieser Gleichung hat der Ausdruck rechts für Werthe des <hirendition="#i">v</hi>,<lb/>
die wenig grösser als <hirendition="#i">b</hi> sind, sowie für sehr grosse Werthe des <hirendition="#i">v</hi><lb/>
einen sehr kleinen positiven Werth. Er ist ferner zwischen<lb/>
diesen Grenzen continuirlich und hat innerhalb derselben nur<lb/>
ein einziges Maximum vom Betrage <hirendition="#i">T<hirendition="#sub">k</hi></hi> = 8 <hirendition="#i">a</hi> / 27 <hirendition="#i">r b</hi> für <hirendition="#i">v</hi> = 3 <hirendition="#i">b</hi>.<lb/></p></div></div></body></text></TEI>
[23/0041]
[Gleich. 27] § 11. Kritische Grössen.
§ 11. Kritische Temperatur, kritischer Druck und
kritisches Volumen.
Wir wollen nun die durch die Formel 22) dargestellte
Relation zwischen dem Drucke, der Temperatur und dem speci-
fischen Volumen eingehender discutiren. Nach derselben wird
für jede Temperatur T für v = b der Druck unendlich. Wie
wir sahen, würde für eine Substanz, welche exact den Waals’-
schen Annahmen genügt, der Druck erst etwa für das Volumen
⅓ b unendlich. Doch wollen wir hierauf nicht näher eingehen,
da nicht die ursprünglichen Annahmen van der Waals’,
sondern lediglich die Gleichung 22), insofern sie für grössere v
ein angenähert richtiger, für kleinere ein wenigstens qualitativ
übereinstimmender Ausdruck derselben ist, das Object unserer
gegenwärtigen Untersuchung bildet.
Das Volumen v = b ist daher unmöglich; um so mehr
jeder kleinere Werth von v, da für einen stabilen Gleich-
gewichtszustand durch Verkleinerung von v der Druck noch
weiter, also noch über den Werth ∞ hinaus, wachsen müsste.
Wir wollen nun die Isotherme, d. h. die Beziehung auf-
suchen, welche zwischen Druck und Volumen besteht, wenn
die Substanz ihr Volumen bei constanter Temperatur ändert.
Da bei einer solchen Volumänderung T als constant zu be-
trachten ist, so folgt aus Gleichung 22)
27) [FORMEL].
Hier ist die rechte Seite für den kleinsten möglichen Werth
des v, der nur wenig grösser als b ist, negativ, ebenso für sehr
grosse Werthe des v. Ferner ändert sie sich, sowie ihre
Differentialquotienten nach v für alle in Betracht kommenden
Werthe des v continuirlich mit der letzteren Grösse. Die
rechte Seite der Gleichung 27) kann nur verschwinden für
[FORMEL].
In dieser Gleichung hat der Ausdruck rechts für Werthe des v,
die wenig grösser als b sind, sowie für sehr grosse Werthe des v
einen sehr kleinen positiven Werth. Er ist ferner zwischen
diesen Grenzen continuirlich und hat innerhalb derselben nur
ein einziges Maximum vom Betrage Tk = 8 a / 27 r b für v = 3 b.
Informationen zur CAB-Ansicht
Diese Ansicht bietet Ihnen die Darstellung des Textes in normalisierter Orthographie.
Diese Textvariante wird vollautomatisch erstellt und kann aufgrund dessen auch Fehler enthalten.
Alle veränderten Wortformen sind grau hinterlegt. Als fremdsprachliches Material erkannte
Textteile sind ausgegraut dargestellt.
Boltzmann, Ludwig: Vorlesungen über Gastheorie. Bd. 2. Leipzig, 1898, S. 23. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/boltzmann_gastheorie02_1898/41>, abgerufen am 21.02.2025.
Alle Inhalte dieser Seite unterstehen, soweit nicht anders gekennzeichnet, einer
Creative-Commons-Lizenz.
Die Rechte an den angezeigten Bilddigitalisaten, soweit nicht anders gekennzeichnet, liegen bei den besitzenden Bibliotheken.
Weitere Informationen finden Sie in den DTA-Nutzungsbedingungen.
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf
diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken
dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder
nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der
Herabwürdigung der Menschenwürde gezeigt werden.
Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des
§ 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen
Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung
der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu
vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2025 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften
(Kontakt).
Zitierempfehlung: Deutsches Textarchiv. Grundlage für ein Referenzkorpus der neuhochdeutschen Sprache. Herausgegeben von der Berlin-Brandenburgischen Akademie der Wissenschaften, Berlin 2025. URL: https://www.deutschestextarchiv.de/.