Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.der Algebra. Der 1. Zusatz. 472. Es sey MP ein Triangel/ dessen Höhe Der 2. Zusatz. 473. Wenn ihr für die beschreibende r2
der Algebra. Der 1. Zuſatz. 472. Es ſey MP ein Triangel/ deſſen Hoͤhe Der 2. Zuſatz. 473. Wenn ihr fuͤr die beſchreibende r2
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <div n="4"> <pb facs="#f0301" n="299"/> <fw place="top" type="header"> <hi rendition="#b">der Algebra.</hi> </fw><lb/> <div n="5"> <head> <hi rendition="#b">Der 1. Zuſatz.</hi> </head><lb/> <p>472. Es ſey <hi rendition="#aq">MP</hi> ein Triangel/ deſſen Hoͤhe<lb/><hi rendition="#aq">AD=<hi rendition="#i">b/</hi></hi> die Grundlinie = <hi rendition="#aq"><hi rendition="#i">r/</hi></hi> ſo iſt <hi rendition="#aq">xy = <hi rendition="#i">rx</hi><lb/> (§. 177 Geom. & §. 126 Algebr.)</hi> und dan-<lb/> nenhero<lb/><hi rendition="#aq"><hi rendition="#u"><hi rendition="#et"><hi rendition="#i">ad</hi>y : <hi rendition="#i">r = d</hi>x<lb/><hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">d</hi>y<hi rendition="#sup">2</hi> : <hi rendition="#i">r</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">dx</hi>2</hi><lb/><hi rendition="#i">c</hi>y<hi rendition="#i">V(dx</hi><hi rendition="#sup">2</hi>+<hi rendition="#i">d</hi>y<hi rendition="#sup">2</hi>) : <hi rendition="#i">r = c</hi>y V(<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">d</hi>y<hi rendition="#sup">2</hi>+<hi rendition="#i">r</hi><hi rendition="#sup">2</hi><hi rendition="#i">d</hi>y<hi rendition="#sup">2</hi>) : <hi rendition="#i">r</hi><hi rendition="#sup">2</hi><lb/><hi rendition="#i">c</hi>y<hi rendition="#i">V (dx</hi><hi rendition="#sup">2</hi>+<hi rendition="#i">d</hi>y<hi rendition="#sup">2</hi>):<hi rendition="#i">r = c</hi>y<hi rendition="#i">d</hi>yV(<hi rendition="#i">a</hi><hi rendition="#sup">2</hi>+<hi rendition="#i">r</hi><hi rendition="#sup">2</hi>) : 2<hi rendition="#i">r</hi><hi rendition="#sup">2</hi></hi><lb/><hi rendition="#i">ſc</hi>yV (<hi rendition="#i">dx<hi rendition="#sup">2</hi>+d</hi>y<hi rendition="#sup">2</hi>):<hi rendition="#i">r = c</hi>y<hi rendition="#sup">2</hi> (<hi rendition="#i">a<hi rendition="#sup">2</hi> + r<hi rendition="#sup">2</hi>) : 2r<hi rendition="#sup">2</hi></hi></hi><lb/> Setzet fuͤr <hi rendition="#aq">y</hi> die Grundlinie <hi rendition="#aq"><hi rendition="#i">r</hi>;</hi> ſo kommet die<lb/> Flaͤche des <hi rendition="#aq">Coni</hi> heraus ½<hi rendition="#aq"><hi rendition="#i">c</hi> V (<hi rendition="#i">r</hi><hi rendition="#sup">2</hi>+<hi rendition="#i">a</hi><hi rendition="#sup">2</hi>).</hi> Da<lb/> nun <hi rendition="#aq">V (<hi rendition="#i">r</hi><hi rendition="#sup">2</hi>+<hi rendition="#i">a</hi><hi rendition="#sup">2</hi>)</hi> ſeine Seite iſt; ſo ſehet ihr/ daß<lb/> die Kegel-Flaͤche einem Triangel gleich ſey/<lb/> deſſen Grundlinie die Peripherie der Grund-<lb/> Flaͤche des Kegels und die Hoͤhe ſeiner Sei-<lb/> te gleich iſt.</p> </div><lb/> <div n="5"> <head> <hi rendition="#b">Der 2. Zuſatz.</hi> </head><lb/> <p>473. Wenn ihr fuͤr die beſchreibende<lb/> Linie einen halben Eircul annehmet/ ſo findet<lb/> ihr die Kugel-Flaͤche. Da nun im Circul<lb/><hi rendition="#et"><hi rendition="#aq"><hi rendition="#u">2<hi rendition="#i">rx-xx</hi>=y<hi rendition="#sup">2</hi></hi></hi><lb/> ſo iſt <hi rendition="#aq"><hi rendition="#u">2<hi rendition="#i">rdx</hi>-2<hi rendition="#i">xdx</hi>=2y<hi rendition="#i">d</hi>y<lb/> (2<hi rendition="#i">rdx</hi>-2<hi rendition="#i">xdx</hi>) : 2y = <hi rendition="#i">d</hi>y</hi></hi></hi><lb/> <fw place="bottom" type="catch"><hi rendition="#aq"><hi rendition="#i">r</hi><hi rendition="#sup">2</hi></hi></fw><lb/></p> </div> </div> </div> </div> </div> </body> </text> </TEI> [299/0301]
der Algebra.
Der 1. Zuſatz.
472. Es ſey MP ein Triangel/ deſſen Hoͤhe
AD=b/ die Grundlinie = r/ ſo iſt xy = rx
(§. 177 Geom. & §. 126 Algebr.) und dan-
nenhero
ady : r = dx
a2dy2 : r2 = dx2
cyV(dx2+dy2) : r = cy V(a2dy2+r2dy2) : r2
cyV (dx2+dy2):r = cydyV(a2+r2) : 2r2
ſcyV (dx2+dy2):r = cy2 (a2 + r2) : 2r2
Setzet fuͤr y die Grundlinie r; ſo kommet die
Flaͤche des Coni heraus ½c V (r2+a2). Da
nun V (r2+a2) ſeine Seite iſt; ſo ſehet ihr/ daß
die Kegel-Flaͤche einem Triangel gleich ſey/
deſſen Grundlinie die Peripherie der Grund-
Flaͤche des Kegels und die Hoͤhe ſeiner Sei-
te gleich iſt.
Der 2. Zuſatz.
473. Wenn ihr fuͤr die beſchreibende
Linie einen halben Eircul annehmet/ ſo findet
ihr die Kugel-Flaͤche. Da nun im Circul
2rx-xx=y2
ſo iſt 2rdx-2xdx=2ydy
(2rdx-2xdx) : 2y = dy
r2
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |