Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.Anfangs-Gründe ayr = bxrya1:r = xb1:r dya1:r = dxb1:r dx : dy = a1:r:b1:r = AC : AE a1:r : b1:r = (na : r) : AE Derowegen ist AE = nab1:r : ra1:r = nar-1,:r b1-r : r = (n:r) [Formel 1] ar-1b. Die 6. Aufgabe. 404. Die Subtangentem AH in einer Auflösung. Tab. V.Fig. 48. Es sey der halbe Diameter des Eirculs FE:
Anfangs-Gruͤnde ayr = bxrya1:r = xb1:r dya1:r = dxb1:r dx : dy = a1:r:b1:r = AC : AE a1:r : b1:r = (na : r) : AE Derowegen iſt AE = nab1:r : ra1:r = nar-1,:r b1-r : r = (n:r) [Formel 1] ar-1b. Die 6. Aufgabe. 404. Die Subtangentem AH in einer Aufloͤſung. Tab. V.Fig. 48. Es ſey der halbe Diameter des Eirculs FE:
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <div n="4"> <div n="5"> <p><pb facs="#f0264" n="262"/><fw place="top" type="header"><hi rendition="#b">Anfangs-Gruͤnde</hi></fw><lb/><hi rendition="#et"><hi rendition="#aq"><hi rendition="#u"><hi rendition="#i">a</hi>y<hi rendition="#sup"><hi rendition="#i">r</hi></hi> = <hi rendition="#i">b</hi>x<hi rendition="#sup"><hi rendition="#i">r</hi></hi><lb/> y<hi rendition="#i">a</hi><hi rendition="#sup">1:<hi rendition="#i">r</hi></hi> = x<hi rendition="#i">b</hi><hi rendition="#sup">1:<hi rendition="#i">r</hi></hi><lb/><hi rendition="#i">d</hi>y<hi rendition="#i">a</hi><hi rendition="#sup">1:<hi rendition="#i">r</hi></hi> = <hi rendition="#i">dxb</hi><hi rendition="#sup">1:<hi rendition="#i">r</hi></hi><lb/><hi rendition="#i">d</hi>x : <hi rendition="#i">d</hi>y = <hi rendition="#i">a</hi><hi rendition="#sup">1:<hi rendition="#i">r</hi></hi>:<hi rendition="#i">b</hi><hi rendition="#sup">1:<hi rendition="#i">r</hi></hi> = AC : AE</hi><lb/><hi rendition="#i">a</hi><hi rendition="#sup">1:<hi rendition="#i">r</hi></hi> : <hi rendition="#i">b</hi><hi rendition="#sup">1:<hi rendition="#i">r</hi></hi> = (<hi rendition="#i">na : r</hi>) : AE</hi></hi><lb/> Derowegen iſt <hi rendition="#aq">AE = <hi rendition="#i">nab</hi><hi rendition="#sup">1:<hi rendition="#i">r</hi></hi> : <hi rendition="#i">ra</hi><hi rendition="#sup">1:<hi rendition="#i">r</hi></hi><lb/> = <hi rendition="#i">na</hi><hi rendition="#sup"><hi rendition="#i">r</hi>-1,:<hi rendition="#i">r</hi></hi> <hi rendition="#i">b</hi><hi rendition="#sup">1-<hi rendition="#i">r</hi></hi> : <hi rendition="#i">r</hi> = (<hi rendition="#i">n:r</hi>) <formula/> <hi rendition="#i">a</hi><hi rendition="#sup"><hi rendition="#i">r</hi>-1</hi><hi rendition="#i">b.</hi></hi></p> </div> </div><lb/> <div n="4"> <head> <hi rendition="#b">Die 6. Aufgabe.</hi> </head><lb/> <p> <hi rendition="#fr">404. Die</hi> <hi rendition="#aq">Subtangentem AH</hi> <hi rendition="#fr">in einer<lb/> Spiral-Linie zu finden.</hi> </p><lb/> <div n="5"> <head> <hi rendition="#b">Aufloͤſung.</hi> </head><lb/> <note place="left"><hi rendition="#aq">Tab. V.<lb/> Fig.</hi> 48.</note> <p>Es ſey der halbe Diameter des Eirculs<lb/><hi rendition="#aq">AB = <hi rendition="#i">a/</hi></hi> die Peripherie = <hi rendition="#aq"><hi rendition="#i">b/</hi></hi> der Bogen<lb/><hi rendition="#aq">BC = x/ AG = y/</hi> ſo iſt <hi rendition="#aq">CD = <hi rendition="#i">dx/</hi> EF<lb/> = <hi rendition="#i">d</hi>y.</hi> Weil nun <hi rendition="#aq">AC</hi> der Linie <hi rendition="#aq">AD</hi> un-<lb/> endlich nahe iſt/ ſo koͤnnet ihr <hi rendition="#aq">EG</hi> als einen<lb/> Bogen anſehen/ der mit dem halben Dia-<lb/> meter <hi rendition="#aq">AG</hi> beſchrieben worden. Demnach<lb/> iſt<lb/><hi rendition="#et"><hi rendition="#aq">AD : AG = CD : EG<lb/><hi rendition="#i">a</hi> y <hi rendition="#i">dx</hi> y<hi rendition="#i">d</hi>x : <hi rendition="#i">a</hi></hi></hi><lb/> Weil <hi rendition="#aq">EG</hi> mit <hi rendition="#aq">FA</hi> einen rechten Winckel<lb/> macht (§. 429) und <hi rendition="#aq">AH</hi> iſt gleichfals auf <hi rendition="#aq">EA</hi><lb/> perpendicular aufgerichtet worden; ſo iſt<lb/> (§. 182. <hi rendition="#aq">Geom.</hi>)</p><lb/> <fw place="bottom" type="catch"> <hi rendition="#aq">FE:</hi> </fw><lb/> </div> </div> </div> </div> </div> </body> </text> </TEI> [262/0264]
Anfangs-Gruͤnde
ayr = bxr
ya1:r = xb1:r
dya1:r = dxb1:r
dx : dy = a1:r:b1:r = AC : AE
a1:r : b1:r = (na : r) : AE
Derowegen iſt AE = nab1:r : ra1:r
= nar-1,:r b1-r : r = (n:r) [FORMEL] ar-1b.
Die 6. Aufgabe.
404. Die Subtangentem AH in einer
Spiral-Linie zu finden.
Aufloͤſung.
Es ſey der halbe Diameter des Eirculs
AB = a/ die Peripherie = b/ der Bogen
BC = x/ AG = y/ ſo iſt CD = dx/ EF
= dy. Weil nun AC der Linie AD un-
endlich nahe iſt/ ſo koͤnnet ihr EG als einen
Bogen anſehen/ der mit dem halben Dia-
meter AG beſchrieben worden. Demnach
iſt
AD : AG = CD : EG
a y dx ydx : a
Weil EG mit FA einen rechten Winckel
macht (§. 429) und AH iſt gleichfals auf EA
perpendicular aufgerichtet worden; ſo iſt
(§. 182. Geom.)
FE:
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |