Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 3, Abt. 1. Leipzig, 1895.§ 31. G. Cantor's gleichmächtige Systeme. oder beide sind es nicht und bilden sodann Mannigfaltigkeiten der zweitenArt im G. Cantor'schen Sinne. Als Beispiel für dieses letztre seien die irrationalen Zahlen -- auch schon die transcendent(irrational)en -- oder auch die Zahlen überhaupt, die Gesamtheit der Punkte einer Geraden, etc. angeführt. Als eins der frappantesten Beispiele zu jenem erstern haben Herrn Cantor's Arbeiten bekanntlich die überraschende Thatsache zutage gefördert: dass das System der rationalen Zahlen (ja sogar das der alge- braischen Zahlen) von gleicher Mächtigkeit ist mit dem der positiven ganzen Zahlen. Wir haben es also zu thun mit einer Erweiterung des Begriffs der Möge darum der Studirende frei von utilitarischen Rücksichten unsern Sehr viel wird ja schon gewonnen sein und der Descartes- Indem wir, etwas abweichend vom Dedekind'schen Gange, die Be- Dabei werden wir jedoch mehrere Wege auszugehen haben. Für die Notwendige und hinreichende Bedingung für die "Ähnlichkeit" § 31. G. Cantor’s gleichmächtige Systeme. oder beide sind es nicht und bilden sodann Mannigfaltigkeiten der zweitenArt im G. Cantor’schen Sinne. Als Beispiel für dieses letztre seien die irrationalen Zahlen — auch schon die transcendent(irrational)en — oder auch die Zahlen überhaupt, die Gesamtheit der Punkte einer Geraden, etc. angeführt. Als eins der frappantesten Beispiele zu jenem erstern haben Herrn Cantor’s Arbeiten bekanntlich die überraschende Thatsache zutage gefördert: dass das System der rationalen Zahlen (ja sogar das der alge- braischen Zahlen) von gleicher Mächtigkeit ist mit dem der positiven ganzen Zahlen. Wir haben es also zu thun mit einer Erweiterung des Begriffs der Möge darum der Studirende frei von utilitarischen Rücksichten unsern Sehr viel wird ja schon gewonnen sein und der Descartes- Indem wir, etwas abweichend vom Dedekind’schen Gange, die Be- Dabei werden wir jedoch mehrere Wege auszugehen haben. Für die Notwendige und hinreichende Bedingung für die „Ähnlichkeit“ <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0613" n="599"/><fw place="top" type="header">§ 31. G. <hi rendition="#g">Cantor’</hi>s gleichmächtige Systeme.</fw><lb/> oder beide sind es nicht und bilden sodann Mannigfaltigkeiten der zweiten<lb/> Art im G. <hi rendition="#g">Cantor’</hi>schen Sinne. Als Beispiel für dieses letztre seien die<lb/> irrationalen Zahlen — auch schon die transcendent(irrational)en — oder<lb/> auch die Zahlen überhaupt, die Gesamtheit der Punkte einer Geraden, etc.<lb/> angeführt. Als eins der frappantesten Beispiele zu jenem erstern haben<lb/> Herrn <hi rendition="#g">Cantor’</hi>s Arbeiten bekanntlich die überraschende Thatsache zutage<lb/> gefördert: dass das System der rationalen Zahlen (ja sogar das der alge-<lb/> braischen Zahlen) von gleicher Mächtigkeit ist mit dem der positiven ganzen<lb/> Zahlen.</p><lb/> <p>Wir haben es also zu thun mit einer Erweiterung des Begriffs der<lb/> Gleichzahligkeit von endlichen Mengen, durch den derselbe auch auf un-<lb/> begrenzte Systeme anwendbar wird und die zugleich für ihn selber pro-<lb/> pädeutisch ist — und werden dabei auf Betrachtungen hingeleitet, die nicht<lb/> verfehlen können, auch der „Mannigfaltigkeitslehre“ und den Theorien des<lb/> „aktual Unendlichen“ den Anschluss an die allgemeine Logik zu sichern<lb/> und sich in diesen einst noch fruchtbar zu erweisen.</p><lb/> <p>Möge darum der Studirende <hi rendition="#i">frei von utilitarischen Rücksichten</hi> unsern<lb/> Ausführungen folgen und als einen Hauptzweck derselben den in’s Auge<lb/> fassen, dass es sich darum handelt, das Instrument unsrer Algebra zunächst<lb/> einmal ordentlich in die Gewalt zu bekommen, um auch auf subtilere Auf-<lb/> gaben es anwenden zu lernen.</p><lb/> <p>Sehr viel wird ja schon gewonnen sein und der <hi rendition="#g">Descartes-<lb/> Leibniz’</hi>sche <hi rendition="#i">Pasigraphie</hi>gedanke wird um einen gewaltigen, vielleicht<lb/> um seinen bedeutungsvollsten und schwersten Schritt gefördert er-<lb/> scheinen, wenn es (in diesem Bande) nur überhaupt gelingt den Nach-<lb/> weis zu liefern: dass das mit unsern Festsetzungen (1) bis (15) ge-<lb/> schaffne <hi rendition="#i">Bezeichnungskapital</hi> (das ich in meiner Annalennote<hi rendition="#sup">11</hi> auf einer<lb/> halben — gar nicht sehr dicht bedruckten — Seite übersichtlichst zu-<lb/> sammengestellt habe) <hi rendition="#i">völlig ausreichend</hi> ist, um <hi rendition="#i">alle Erklärungen</hi>, <hi rendition="#i">Sätze</hi><lb/> und <hi rendition="#i">Schlüsse</hi> aus dem Gedankenkreise der <hi rendition="#g">Dedekind’</hi>schen Schrift —<lb/> mithin <hi rendition="#i">die Grundbegriffe der</hi> gesamten <hi rendition="#i">arithmetischen Wissenschaft</hi> —<lb/><hi rendition="#i">in</hi> konziseste <hi rendition="#i">Formeln einzukleiden</hi> und <hi rendition="#i">mit absoluter Konsequenz</hi>, exakt<lb/> und erschöpfend zur Darstellung zu bringen.</p><lb/> <p>Indem wir, etwas abweichend vom <hi rendition="#g">Dedekind’</hi>schen Gange, die Be-<lb/> trachtung der nur einseitig eindeutigen Zuordnung von Elementen eines<lb/> Systems zu denen eines andern auf etwas später verschieben, beginnen wir<lb/> sogleich mit der gegenseitig eindeutigen Zuordnung zwischen den Elementen<lb/> zweier Systeme und dem Begriff der „ähnlichen“ Systeme <hi rendition="#fr">D</hi> 26, 32 sowie,<lb/> daran anschliessend, mit der Etablirung der auf letztere bezüglichen Sätze.</p><lb/> <p>Dabei werden wir jedoch <hi rendition="#i">mehrere</hi> Wege auszugehen haben. Für die<lb/><hi rendition="#i">Ähnlichkeitsdefinition</hi> drängen sich uns verschiedene Fassungen auf, die auch<lb/> aufeinander zurückzuführen sein werden.</p><lb/> <p>Notwendige und hinreichende Bedingung für die „<hi rendition="#i">Ähnlichkeit</hi>“<lb/> sive „<hi rendition="#i">Gleichmächtigkeit</hi>“ zweier Systeme<lb/></p> </div> </div> </body> </text> </TEI> [599/0613]
§ 31. G. Cantor’s gleichmächtige Systeme.
oder beide sind es nicht und bilden sodann Mannigfaltigkeiten der zweiten
Art im G. Cantor’schen Sinne. Als Beispiel für dieses letztre seien die
irrationalen Zahlen — auch schon die transcendent(irrational)en — oder
auch die Zahlen überhaupt, die Gesamtheit der Punkte einer Geraden, etc.
angeführt. Als eins der frappantesten Beispiele zu jenem erstern haben
Herrn Cantor’s Arbeiten bekanntlich die überraschende Thatsache zutage
gefördert: dass das System der rationalen Zahlen (ja sogar das der alge-
braischen Zahlen) von gleicher Mächtigkeit ist mit dem der positiven ganzen
Zahlen.
Wir haben es also zu thun mit einer Erweiterung des Begriffs der
Gleichzahligkeit von endlichen Mengen, durch den derselbe auch auf un-
begrenzte Systeme anwendbar wird und die zugleich für ihn selber pro-
pädeutisch ist — und werden dabei auf Betrachtungen hingeleitet, die nicht
verfehlen können, auch der „Mannigfaltigkeitslehre“ und den Theorien des
„aktual Unendlichen“ den Anschluss an die allgemeine Logik zu sichern
und sich in diesen einst noch fruchtbar zu erweisen.
Möge darum der Studirende frei von utilitarischen Rücksichten unsern
Ausführungen folgen und als einen Hauptzweck derselben den in’s Auge
fassen, dass es sich darum handelt, das Instrument unsrer Algebra zunächst
einmal ordentlich in die Gewalt zu bekommen, um auch auf subtilere Auf-
gaben es anwenden zu lernen.
Sehr viel wird ja schon gewonnen sein und der Descartes-
Leibniz’sche Pasigraphiegedanke wird um einen gewaltigen, vielleicht
um seinen bedeutungsvollsten und schwersten Schritt gefördert er-
scheinen, wenn es (in diesem Bande) nur überhaupt gelingt den Nach-
weis zu liefern: dass das mit unsern Festsetzungen (1) bis (15) ge-
schaffne Bezeichnungskapital (das ich in meiner Annalennote11 auf einer
halben — gar nicht sehr dicht bedruckten — Seite übersichtlichst zu-
sammengestellt habe) völlig ausreichend ist, um alle Erklärungen, Sätze
und Schlüsse aus dem Gedankenkreise der Dedekind’schen Schrift —
mithin die Grundbegriffe der gesamten arithmetischen Wissenschaft —
in konziseste Formeln einzukleiden und mit absoluter Konsequenz, exakt
und erschöpfend zur Darstellung zu bringen.
Indem wir, etwas abweichend vom Dedekind’schen Gange, die Be-
trachtung der nur einseitig eindeutigen Zuordnung von Elementen eines
Systems zu denen eines andern auf etwas später verschieben, beginnen wir
sogleich mit der gegenseitig eindeutigen Zuordnung zwischen den Elementen
zweier Systeme und dem Begriff der „ähnlichen“ Systeme D 26, 32 sowie,
daran anschliessend, mit der Etablirung der auf letztere bezüglichen Sätze.
Dabei werden wir jedoch mehrere Wege auszugehen haben. Für die
Ähnlichkeitsdefinition drängen sich uns verschiedene Fassungen auf, die auch
aufeinander zurückzuführen sein werden.
Notwendige und hinreichende Bedingung für die „Ähnlichkeit“
sive „Gleichmächtigkeit“ zweier Systeme
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |