Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.Achtzehnte Vorlesung. VIII0. Produkte der Grundbeziehungen unter sich.
sichtlich zu machen, insbesondre nämlich diese Kollektivaussage nach den fünf Elementarfällen alsbald zu entwickeln. Letzteres wird erreicht durch successive "Ausrechnung", aussagen- Ein paar Beispiele mögen das Gesagte erläutern. Sei etwa die Kollektivaussage folgende: Achtzehnte Vorlesung. VIII0. Produkte der Grundbeziehungen unter sich.
sichtlich zu machen, insbesondre nämlich diese Kollektivaussage nach den fünf Elementarfällen alsbald zu entwickeln. Letzteres wird erreicht durch successive „Ausrechnung“, aussagen- Ein paar Beispiele mögen das Gesagte erläutern. Sei etwa die Kollektivaussage folgende: <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0150" n="126"/><fw place="top" type="header">Achtzehnte Vorlesung.</fw><lb/><hi rendition="#c">VIII<hi rendition="#sup">0</hi>. <hi rendition="#g">Produkte der Grundbeziehungen unter sich</hi>.</hi><lb/><table><row><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi> = <hi rendition="#i">β</hi> + <hi rendition="#i">δ</hi>,</cell><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">α</hi> + <hi rendition="#i">γ</hi>,</cell><cell><hi rendition="#i">a b</hi> = <hi rendition="#i">k</hi>,</cell><cell><hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">k</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi>,</cell></row><lb/><row><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi> = <hi rendition="#i">γ</hi> + <hi rendition="#i">δ</hi>,</cell><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">α</hi> + <hi rendition="#i">β</hi>,</cell><cell><hi rendition="#i">a c</hi> = <hi rendition="#i">h</hi>,</cell><cell><hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">h</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi>,</cell></row><lb/><row><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi> = <hi rendition="#i">δ</hi>,</cell><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">α</hi> + <hi rendition="#i">β</hi> + <hi rendition="#i">γ</hi>,</cell><cell><hi rendition="#i">a d</hi> = <hi rendition="#i">h k</hi>,</cell><cell><hi rendition="#i">a d</hi><hi rendition="#sub">1</hi> = (<hi rendition="#i">h</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">k</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">a</hi>,</cell></row><lb/><row><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi> = <hi rendition="#i">β</hi>,</cell><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">α</hi> + <hi rendition="#i">γ</hi> + <hi rendition="#i">δ</hi>,</cell><cell><hi rendition="#i">a e</hi> = <hi rendition="#i">h</hi><hi rendition="#sub">1</hi> <hi rendition="#i">k</hi>,</cell><cell><hi rendition="#i">a e</hi><hi rendition="#sub">1</hi> = (<hi rendition="#i">h</hi> + <hi rendition="#i">k</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi>),</cell></row><lb/><row><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi> = <hi rendition="#i">γ</hi>,</cell><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">α</hi> + <hi rendition="#i">β</hi> + <hi rendition="#i">δ</hi>,</cell><cell><hi rendition="#i">a f</hi> = <hi rendition="#i">h k</hi><hi rendition="#sub">1</hi>,</cell><cell><hi rendition="#i">a f</hi><hi rendition="#sub">1</hi> = (<hi rendition="#i">h</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi> + <hi rendition="#i">k</hi>),</cell></row><lb/><row><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell><cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">β</hi> + <hi rendition="#i">γ</hi> + <hi rendition="#i">δ</hi>,</cell><cell><hi rendition="#i">a g</hi> = 0,</cell><cell><hi rendition="#i">a g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi>,</cell></row><lb/><row><cell><hi rendition="#i">b c</hi> = <hi rendition="#i">d</hi>,</cell><cell><hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi>,</cell><cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi> = <hi rendition="#i">f</hi>,</cell><cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">h</hi><hi rendition="#sub">1</hi> <hi rendition="#i">k</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi> + <hi rendition="#i">α</hi>,</cell></row><lb/><row><cell><hi rendition="#i">b d</hi> = <hi rendition="#i">d</hi>,</cell><cell><hi rendition="#i">b d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi>,</cell><cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi> = 0,</cell><cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>,</cell></row><lb/><row><cell><hi rendition="#i">b e</hi> = <hi rendition="#i">e</hi>,</cell><cell><hi rendition="#i">b e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi>,</cell><cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi> = 0,</cell><cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>,</cell></row><lb/><row><cell><hi rendition="#i">b f</hi> = 0,</cell><cell><hi rendition="#i">b f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi>,</cell><cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi> = <hi rendition="#i">f</hi>,</cell><cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">h</hi><hi rendition="#sub">1</hi> <hi rendition="#i">k</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi> + <hi rendition="#i">α</hi>,</cell></row><lb/><row><cell><hi rendition="#i">b g</hi> = 0,</cell><cell><hi rendition="#i">b g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi>,</cell><cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell><cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">k</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi> + <hi rendition="#i">γ</hi>,</cell></row><lb/><row><cell><hi rendition="#i">c d</hi> = <hi rendition="#i">d</hi>,</cell><cell><hi rendition="#i">c d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">f</hi>,</cell><cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi> = 0,</cell><cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,</cell></row><lb/><row><cell><hi rendition="#i">c e</hi> = 0,</cell><cell><hi rendition="#i">c e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi>,</cell><cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi> = <hi rendition="#i">e</hi>,</cell><cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">h</hi><hi rendition="#sub">1</hi> <hi rendition="#i">k</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi> + <hi rendition="#i">α</hi>,</cell></row><lb/><row><cell><hi rendition="#i">c f</hi> = <hi rendition="#i">f</hi>,</cell><cell><hi rendition="#i">c f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi>,</cell><cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi> = 0,</cell><cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,</cell></row><lb/><row><cell><hi rendition="#i">c g</hi> = 0,</cell><cell><hi rendition="#i">c g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi>,</cell><cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell><cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">h</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi> + <hi rendition="#i">β</hi>,</cell></row><lb/><row><cell><hi rendition="#i">d e</hi> = 0,</cell><cell><hi rendition="#i">d e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi>,</cell><cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi> = <hi rendition="#i">e</hi>,</cell><cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi>,</cell></row><lb/><row><cell><hi rendition="#i">d f</hi> = 0,</cell><cell><hi rendition="#i">d f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi>,</cell><cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi> = <hi rendition="#i">f</hi>,</cell><cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi>,</cell></row><lb/><row><cell><hi rendition="#i">d g</hi> = 0,</cell><cell><hi rendition="#i">d g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi>,</cell><cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell><cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = (<hi rendition="#i">h</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">k</hi><hi rendition="#sub">1</hi>) <hi rendition="#i">a</hi> + <hi rendition="#i">β</hi> + <hi rendition="#i">γ</hi>,</cell></row><lb/><row><cell><hi rendition="#i">e f</hi> = 0,</cell><cell><hi rendition="#i">e f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi>,</cell><cell><hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi> = <hi rendition="#i">f</hi>,</cell><cell><hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = (<hi rendition="#i">h k</hi> + <hi rendition="#i">h</hi><hi rendition="#sub">1</hi> <hi rendition="#i">k</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi>) + <hi rendition="#i">α</hi> + <hi rendition="#i">δ</hi>,</cell></row><lb/><row><cell><hi rendition="#i">e g</hi> = 0,</cell><cell><hi rendition="#i">e g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi>,</cell><cell><hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell><cell><hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = (<hi rendition="#i">h</hi> + <hi rendition="#i">k</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi>) + <hi rendition="#i">γ</hi> + <hi rendition="#i">δ</hi>,</cell></row><lb/><row><cell><hi rendition="#i">f g</hi> = 0,</cell><cell><hi rendition="#i">f g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">f</hi>,</cell><cell><hi rendition="#i">f</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell><cell><hi rendition="#i">f</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = (<hi rendition="#i">h</hi><hi rendition="#sub">1</hi> <hi rendition="#i">a</hi> + <hi rendition="#i">k</hi>) + <hi rendition="#i">β</hi> + <hi rendition="#i">δ</hi>.</cell></row><lb/></table><hi rendition="#i">aussage</hi> möglichst rasch <hi rendition="#i">herauszuschälen</hi>, die Tragweite derselben über-<lb/> sichtlich zu machen, insbesondre nämlich diese Kollektivaussage <hi rendition="#i">nach<lb/> den fünf Elementarfällen</hi> alsbald <hi rendition="#i">zu entwickeln</hi>.</p><lb/> <p>Letzteres wird erreicht durch successive „Ausrechnung“, aussagen-<lb/> rechnerische Reduktion jener Kollektivaussage unter Benutzung der Tafeln.</p><lb/> <p>Ein paar Beispiele mögen das Gesagte erläutern.</p><lb/> <p>Sei etwa die Kollektivaussage folgende:<lb/><hi rendition="#c"><hi rendition="#i">x</hi> = (<hi rendition="#i">A</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">B</hi>) (<hi rendition="#i">A</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">B</hi>) + (<hi rendition="#i">A</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">B</hi>) (<hi rendition="#i">A</hi> ≠ O) (<hi rendition="#i">B</hi> = O) +<lb/> + (<hi rendition="#i">A</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">B</hi>) (<hi rendition="#i">A</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">B</hi>) (<hi rendition="#i">A</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">B</hi>),</hi><lb/> so haben wir (aus Tafel II<hi rendition="#sup">0</hi> und § 35, [3<hi rendition="#sup">0</hi>] die Werte einsetzend, sodann<lb/> aus Tafel VIII<hi rendition="#sup">0</hi> <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> <hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>, aus Tafel VI<hi rendition="#sup">0</hi> <hi rendition="#i">a k</hi> = <hi rendition="#i">k</hi>, aus VIII<hi rendition="#sup">0</hi> <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> <hi rendition="#i">c</hi> = <hi rendition="#i">f</hi> und<lb/><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> <hi rendition="#i">f</hi> = <hi rendition="#i">γ</hi>, endlich aus III<hi rendition="#sup">0</hi> <hi rendition="#i">g</hi> = <hi rendition="#i">α</hi> berücksichtigend):<lb/></p> </div> </div> </div> </body> </text> </TEI> [126/0150]
Achtzehnte Vorlesung.
VIII0. Produkte der Grundbeziehungen unter sich.
a1 b = β + δ, a1 b1 = α + γ, a b = k, a b1 = k1 a,
a1 c = γ + δ, a1 c1 = α + β, a c = h, a c1 = h1 a,
a1 d = δ, a1 d1 = α + β + γ, a d = h k, a d1 = (h1 + k1) a,
a1 e = β, a1 e1 = α + γ + δ, a e = h1 k, a e1 = (h + k1 a),
a1 f = γ, a1 f1 = α + β + δ, a f = h k1, a f1 = (h1 a + k),
a1 g = g, a1 g1 = β + γ + δ, a g = 0, a g1 = a,
b c = d, b c1 = e, b1 c = f, b1 c1 = h1 k1 a + α,
b d = d, b d1 = e, b1 d = 0, b1 d1 = b1,
b e = e, b e1 = d, b1 e = 0, b1 e1 = b1,
b f = 0, b f1 = b, b1 f = f, b1 f1 = h1 k1 a + α,
b g = 0, b g1 = b, b1 g = g, b1 g1 = k1 a + γ,
c d = d, c d1 = f, c1 d = 0, c1 d1 = c1,
c e = 0, c e1 = c, c1 e = e, c1 e1 = h1 k1 a + α,
c f = f, c f1 = d, c1 f = 0, c1 f1 = c1,
c g = 0, c g1 = c, c1 g = g, c1 g1 = h1 a + β,
d e = 0, d e1 = d, d1 e = e, d1 e1 = b1,
d f = 0, d f1 = d, d1 f = f, d1 f1 = c1,
d g = 0, d g1 = d, d1 g = g, d1 g1 = (h1 + k1) a + β + γ,
e f = 0, e f1 = e, e1 f = f, e1 f1 = (h k + h1 k1 a) + α + δ,
e g = 0, e g1 = e, e1 g = g, e1 g1 = (h + k1 a) + γ + δ,
f g = 0, f g1 = f, f1 g = g, f1 g1 = (h1 a + k) + β + δ.
aussage möglichst rasch herauszuschälen, die Tragweite derselben über-
sichtlich zu machen, insbesondre nämlich diese Kollektivaussage nach
den fünf Elementarfällen alsbald zu entwickeln.
Letzteres wird erreicht durch successive „Ausrechnung“, aussagen-
rechnerische Reduktion jener Kollektivaussage unter Benutzung der Tafeln.
Ein paar Beispiele mögen das Gesagte erläutern.
Sei etwa die Kollektivaussage folgende:
x = (A  B) (A  B) + (A  B) (A ≠ O) (B = O) +
+ (A  B) (A  B) (A  B),
so haben wir (aus Tafel II0 und § 35, [30] die Werte einsetzend, sodann
aus Tafel VIII0 c1 g = g, aus Tafel VI0 a k = k, aus VIII0 b1 c = f und
a1 f = γ, endlich aus III0 g = α berücksichtigend):
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/schroeder_logik0201_1891 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/schroeder_logik0201_1891/150 |
Zitationshilfe: | Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891, S. 126. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/schroeder_logik0201_1891/150>, abgerufen am 18.02.2025. |