Klein, Felix: Über Riemann's Theorie der Algebraischen Functionen und ihrer Integrale. Leipzig, 1882.Zur Abbildbarkeit zweier symmetrischer Flächen auf einander ist neben der Uebereinstimmung in den Attributen das Bestehen von Gleichungen zwischen den reellen Constanten der Fläche erforderlich. Die Fälle und , welche hierbei ausgeschlossen wurden, sind implicite bereits im vorigen Paragraphen erledigt. Selbstverständlich müssen zwei symmetrische Flächen , die sich auf einander sollen abbilden lassen, die gleiche Invariante J besitzen, was eine Bedingung für die Constanten der Flächen abgibt, insofern J jedenfalls reell ist. Im Uebrigen aber findet man sofort, dass die Abbildung sich allemal ermöglicht, sobald die symmetrischen Flächen, wie dies selbstverständlich verlangt werden muss, in der Zahl der Uebergangscurven übereinstimmen. §. 23. Berandete Flächen und Doppelflächen. Auf Grund der nunmehr gewonnenen Resultate können wir den bisherigen Untersuchungen über die Abbildung geschlossener Flächen eine scheinbar bedeutende Verallgemeinerung zu Theil werden lassen, und habe ich eben desshalb die symmetrischen Flächen so ausführlich betrachtet. Wir können jetzt nämlich berandete Flächen und Doppelflächen in Betracht ziehen (mögen nun letztere berandet sein, oder nicht) und mit einem Schlage die auf sie bezüglichen Fragen erledigen. Hierzu gehört, was die Einführung der Randcurven angeht, dass wir uns von einer gewissen Beschränkung befreien, welche wir bisher, allerdings nur implicite, vorausgesetzt haben. Wir dachten uns die Flächen, auf denen wir operirten, bislang durchweg als stetig gekrümmt, oder doch nur in einzelnen Puncten (den Verzweigungspuncten) mit Unstetigkeiten behaftet. Aber nichts hindert uns, jetzt hinterher auch andere Unstetigkeiten zuzulassen. Wir werden uns z. B. vorstellen dürfen, dass unsere Fläche aus einer endlichen Anzahl verschiedener (im Allgemeinen selbst gekrümmter) Stücke, welche unter endlichen Winkeln zusammenstossen, polyederartig zusammengesetzt sei. Können wir uns doch auf einer solchen Fläche ebensogut elektrische Ströme verlaufend denken, wie auf einer stetig gekrümmten! Unter diese Flächen nun lassen sich die berandeten Flächen subsumiren. Ich verdanke diese Auffassung einer gelegentlichen Unterredung
mit Hrn. Schwarz (Ostern 1881). Man vergl. p. 320 ff. der bereits
genannten Arbeit von Schottky im 83. Bande von Borchardt's Journal,
sowie die Originaluntersuchungen von Schwarz über die Abbildung
geschlossener Polyederflächen auf die Kugel (Berliner Monatsberichte
1865 p. 150 ff., Borchardt's Journal Bd. 70, p. 121--136, Bd. 75, p. 330.)
Zur Abbildbarkeit zweier symmetrischer Flächen auf einander ist neben der Uebereinstimmung in den Attributen das Bestehen von Gleichungen zwischen den reellen Constanten der Fläche erforderlich. Die Fälle und , welche hierbei ausgeschlossen wurden, sind implicite bereits im vorigen Paragraphen erledigt. Selbstverständlich müssen zwei symmetrische Flächen , die sich auf einander sollen abbilden lassen, die gleiche Invariante J besitzen, was eine Bedingung für die Constanten der Flächen abgibt, insofern J jedenfalls reell ist. Im Uebrigen aber findet man sofort, dass die Abbildung sich allemal ermöglicht, sobald die symmetrischen Flächen, wie dies selbstverständlich verlangt werden muss, in der Zahl der Uebergangscurven übereinstimmen. §. 23. Berandete Flächen und Doppelflächen. Auf Grund der nunmehr gewonnenen Resultate können wir den bisherigen Untersuchungen über die Abbildung geschlossener Flächen eine scheinbar bedeutende Verallgemeinerung zu Theil werden lassen, und habe ich eben desshalb die symmetrischen Flächen so ausführlich betrachtet. Wir können jetzt nämlich berandete Flächen und Doppelflächen in Betracht ziehen (mögen nun letztere berandet sein, oder nicht) und mit einem Schlage die auf sie bezüglichen Fragen erledigen. Hierzu gehört, was die Einführung der Randcurven angeht, dass wir uns von einer gewissen Beschränkung befreien, welche wir bisher, allerdings nur implicite, vorausgesetzt haben. Wir dachten uns die Flächen, auf denen wir operirten, bislang durchweg als stetig gekrümmt, oder doch nur in einzelnen Puncten (den Verzweigungspuncten) mit Unstetigkeiten behaftet. Aber nichts hindert uns, jetzt hinterher auch andere Unstetigkeiten zuzulassen. Wir werden uns z. B. vorstellen dürfen, dass unsere Fläche aus einer endlichen Anzahl verschiedener (im Allgemeinen selbst gekrümmter) Stücke, welche unter endlichen Winkeln zusammenstossen, polyederartig zusammengesetzt sei. Können wir uns doch auf einer solchen Fläche ebensogut elektrische Ströme verlaufend denken, wie auf einer stetig gekrümmten! Unter diese Flächen nun lassen sich die berandeten Flächen subsumiren. Ich verdanke diese Auffassung einer gelegentlichen Unterredung
mit Hrn. Schwarz (Ostern 1881). Man vergl. p. 320 ff. der bereits
genannten Arbeit von Schottky im 83. Bande von Borchardt's Journal,
sowie die Originaluntersuchungen von Schwarz über die Abbildung
geschlossener Polyederflächen auf die Kugel (Berliner Monatsberichte
1865 p. 150 ff., Borchardt's Journal Bd. 70, p. 121—136, Bd. 75, p. 330.)
<TEI> <text> <body> <div n="1"> <div> <pb facs="#f0086" n="78"/> <p> <hi rendition="#i">Zur Abbildbarkeit zweier symmetrischer Flächen <formula notation="TeX">p > 1</formula> auf einander ist neben der Uebereinstimmung in den Attributen das Bestehen von <formula notation="TeX">(3p - 3)</formula> Gleichungen zwischen den reellen Constanten der Fläche erforderlich.</hi> </p> <p>Die Fälle <formula notation="TeX">p = 0</formula> und <formula notation="TeX">p = 1</formula>, welche hierbei ausgeschlossen wurden, sind implicite bereits im vorigen Paragraphen erledigt. Selbstverständlich müssen zwei symmetrische Flächen <formula notation="TeX">p = 1</formula>, die sich auf einander sollen abbilden lassen, die gleiche Invariante <hi rendition="#i">J</hi> besitzen, was <hi rendition="#i">eine</hi> Bedingung für die Constanten der Flächen abgibt, insofern <hi rendition="#i">J</hi> jedenfalls reell ist. Im Uebrigen aber findet man sofort, dass die Abbildung sich allemal ermöglicht, sobald die symmetrischen Flächen, wie dies selbstverständlich verlangt werden muss, <hi rendition="#i">in der Zahl der Uebergangscurven</hi> übereinstimmen.</p> </div> <div> <head>§. 23. Berandete Flächen und Doppelflächen.</head><lb/> <p>Auf Grund der nunmehr gewonnenen Resultate können wir den bisherigen Untersuchungen über die Abbildung <hi rendition="#i">geschlossener</hi> Flächen eine scheinbar bedeutende Verallgemeinerung zu Theil werden lassen, und habe ich eben desshalb die symmetrischen Flächen so ausführlich betrachtet. Wir können jetzt nämlich <hi rendition="#i">berandete</hi> Flächen und <hi rendition="#i">Doppelflächen</hi> in Betracht ziehen (mögen nun letztere berandet sein, oder nicht) und mit einem Schlage die auf sie bezüglichen Fragen erledigen. Hierzu gehört, was die Einführung der Randcurven angeht, dass wir uns von einer gewissen Beschränkung befreien, welche wir bisher, allerdings nur implicite, vorausgesetzt haben. Wir dachten uns die Flächen, auf denen wir operirten, bislang durchweg als stetig gekrümmt, oder doch nur in einzelnen Puncten (den Verzweigungspuncten) mit Unstetigkeiten behaftet. Aber nichts hindert uns, jetzt hinterher auch andere Unstetigkeiten zuzulassen. Wir werden uns z. B. vorstellen dürfen, dass unsere Fläche aus einer endlichen Anzahl verschiedener (im Allgemeinen selbst gekrümmter) Stücke, welche unter endlichen Winkeln zusammenstossen, polyederartig zusammengesetzt sei. Können wir uns doch auf einer solchen Fläche ebensogut elektrische Ströme verlaufend denken, wie auf einer stetig gekrümmten! Unter diese Flächen nun lassen sich die berandeten Flächen subsumiren.<note place="foot"><p>Ich verdanke diese Auffassung einer gelegentlichen Unterredung mit Hrn. Schwarz (Ostern 1881). Man vergl. p. 320 ff. der bereits genannten Arbeit von Schottky im 83. Bande von Borchardt's Journal, sowie die Originaluntersuchungen von Schwarz über die Abbildung geschlossener Polyederflächen auf die Kugel (Berliner Monatsberichte 1865 p. 150 ff., Borchardt's Journal Bd. 70, p. 121—136, Bd. 75, p. 330.)</p></note> </p> </div> </div> </body> </text> </TEI> [78/0086]
Zur Abbildbarkeit zweier symmetrischer Flächen [FORMEL] auf einander ist neben der Uebereinstimmung in den Attributen das Bestehen von [FORMEL] Gleichungen zwischen den reellen Constanten der Fläche erforderlich.
Die Fälle [FORMEL] und [FORMEL], welche hierbei ausgeschlossen wurden, sind implicite bereits im vorigen Paragraphen erledigt. Selbstverständlich müssen zwei symmetrische Flächen [FORMEL], die sich auf einander sollen abbilden lassen, die gleiche Invariante J besitzen, was eine Bedingung für die Constanten der Flächen abgibt, insofern J jedenfalls reell ist. Im Uebrigen aber findet man sofort, dass die Abbildung sich allemal ermöglicht, sobald die symmetrischen Flächen, wie dies selbstverständlich verlangt werden muss, in der Zahl der Uebergangscurven übereinstimmen.
§. 23. Berandete Flächen und Doppelflächen.
Auf Grund der nunmehr gewonnenen Resultate können wir den bisherigen Untersuchungen über die Abbildung geschlossener Flächen eine scheinbar bedeutende Verallgemeinerung zu Theil werden lassen, und habe ich eben desshalb die symmetrischen Flächen so ausführlich betrachtet. Wir können jetzt nämlich berandete Flächen und Doppelflächen in Betracht ziehen (mögen nun letztere berandet sein, oder nicht) und mit einem Schlage die auf sie bezüglichen Fragen erledigen. Hierzu gehört, was die Einführung der Randcurven angeht, dass wir uns von einer gewissen Beschränkung befreien, welche wir bisher, allerdings nur implicite, vorausgesetzt haben. Wir dachten uns die Flächen, auf denen wir operirten, bislang durchweg als stetig gekrümmt, oder doch nur in einzelnen Puncten (den Verzweigungspuncten) mit Unstetigkeiten behaftet. Aber nichts hindert uns, jetzt hinterher auch andere Unstetigkeiten zuzulassen. Wir werden uns z. B. vorstellen dürfen, dass unsere Fläche aus einer endlichen Anzahl verschiedener (im Allgemeinen selbst gekrümmter) Stücke, welche unter endlichen Winkeln zusammenstossen, polyederartig zusammengesetzt sei. Können wir uns doch auf einer solchen Fläche ebensogut elektrische Ströme verlaufend denken, wie auf einer stetig gekrümmten! Unter diese Flächen nun lassen sich die berandeten Flächen subsumiren.
Ich verdanke diese Auffassung einer gelegentlichen Unterredung mit Hrn. Schwarz (Ostern 1881). Man vergl. p. 320 ff. der bereits genannten Arbeit von Schottky im 83. Bande von Borchardt's Journal, sowie die Originaluntersuchungen von Schwarz über die Abbildung geschlossener Polyederflächen auf die Kugel (Berliner Monatsberichte 1865 p. 150 ff., Borchardt's Journal Bd. 70, p. 121—136, Bd. 75, p. 330.)
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … gutenberg.org: Bereitstellung der Texttranskription und Auszeichnung in HTML.
(2012-11-06T13:54:31Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme aus gutenberg.org entsprechen muss.
gutenberg.org: Bereitstellung der Bilddigitalisate
(2012-11-06T13:54:31Z)
Frank Wiegand: Konvertierung von HTML nach XML/TEI gemäß DTA-Basisformat.
(2012-11-06T13:54:31Z)
Weitere Informationen:Anmerkungen zur Transkription:
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |