Klein, Felix: Über Riemann's Theorie der Algebraischen Functionen und ihrer Integrale. Leipzig, 1882.solche Function nicht existirt, oder vielmehr, dass sie sich auf eine Constante reducirt. Und in der That ist dieser Beweis nicht schwierig. Was eine Durchführung desselben in strenger Form betrifft, so will ich mich darauf beschränken, zu bemerken, dass dieselbe mit Hülfe des verallgemeinerten Green'schen Satzes gelingt. Die folgenden Betrachtungen sollen auf anschauungsmässigem Wege dieselbe Unmöglichkeit darthun. Mag man dieselben wegen der unbestimmten Form, die sie besitzen, vielleicht auch nicht als zwingend erachten, so scheint es doch nützlich, auch in dieser Weise den Gründen für das Bestehen jenes Theoremes nachzugehen. Wir mögen den besonderen Fall vorweg nehmen und uns also fragen, wesshalb auf der Kugel eine einförmige, überall endliche Strömung unmöglich ist. Das Zweckmässigste scheint es zu sein, den Verlauf der Strömungscurven auf der Kugel zu verfolgen. Da Unendlichkeitspuncte nicht auftreten sollen, so kann eine Strömungscurve nicht plötzlich abbrechen, wie es in einem Quellenpuncte, oder in einem algebraischen Unstetigkeitspuncte geschieht. Ueberdiess halte man vor Augen, dass neben einander herlaufende Strömungscurven nothwendig gleichen Strömungssinn haben. Man erkennt dann, dass nur zweierlei Arten von nicht abbrechenden Strömungscurven möglich sind. Entweder die Curve windet sich, je länger um so enger, um einen asymptotischen Punct -- dann haben wir wieder einen Unendlichkeitspunct --, oder die Curve ist geschlossen. Ist aber eine Strömungscurve geschlossen, so sind es die nächstfolgenden auch. Dabei schliessen sie einen kleineren und kleineren Theil der Kugelfläche ein. Es kann also nicht fehlen, dass man zu einem Wirbelpuncte, d. h. abermals zu einem Unendlichkeitspuncte geführt wird. Eine überall endliche Strömung ist also in der That unmöglich. Allerdings haben wir der Möglichkeit nicht gedacht, die in dem Auftreten von Kreuzungspuncten liegt. Diese Puncte sind jedenfalls nur, wie oben hervorgehoben, in endlicher Zahl vorhanden. Es wird also nur eine endliche Zahl von Strömungscurven Wegen dieses Satzes siehe Beltrami, 1. c. p. 354. Ich will übrigens daran erinnern, dass man auch den Green'schen
Satz anschauungsmässig begründen kann. Vgl. Tait, On Green's
and allied other theorems, Edinburgh Transactions, 1869--70, p. 69 ff.
solche Function nicht existirt, oder vielmehr, dass sie sich auf eine Constante reducirt. Und in der That ist dieser Beweis nicht schwierig. Was eine Durchführung desselben in strenger Form betrifft, so will ich mich darauf beschränken, zu bemerken, dass dieselbe mit Hülfe des verallgemeinerten Green'schen Satzes gelingt. Die folgenden Betrachtungen sollen auf anschauungsmässigem Wege dieselbe Unmöglichkeit darthun. Mag man dieselben wegen der unbestimmten Form, die sie besitzen, vielleicht auch nicht als zwingend erachten, so scheint es doch nützlich, auch in dieser Weise den Gründen für das Bestehen jenes Theoremes nachzugehen. Wir mögen den besonderen Fall vorweg nehmen und uns also fragen, wesshalb auf der Kugel eine einförmige, überall endliche Strömung unmöglich ist. Das Zweckmässigste scheint es zu sein, den Verlauf der Strömungscurven auf der Kugel zu verfolgen. Da Unendlichkeitspuncte nicht auftreten sollen, so kann eine Strömungscurve nicht plötzlich abbrechen, wie es in einem Quellenpuncte, oder in einem algebraischen Unstetigkeitspuncte geschieht. Ueberdiess halte man vor Augen, dass neben einander herlaufende Strömungscurven nothwendig gleichen Strömungssinn haben. Man erkennt dann, dass nur zweierlei Arten von nicht abbrechenden Strömungscurven möglich sind. Entweder die Curve windet sich, je länger um so enger, um einen asymptotischen Punct — dann haben wir wieder einen Unendlichkeitspunct —, oder die Curve ist geschlossen. Ist aber eine Strömungscurve geschlossen, so sind es die nächstfolgenden auch. Dabei schliessen sie einen kleineren und kleineren Theil der Kugelfläche ein. Es kann also nicht fehlen, dass man zu einem Wirbelpuncte, d. h. abermals zu einem Unendlichkeitspuncte geführt wird. Eine überall endliche Strömung ist also in der That unmöglich. Allerdings haben wir der Möglichkeit nicht gedacht, die in dem Auftreten von Kreuzungspuncten liegt. Diese Puncte sind jedenfalls nur, wie oben hervorgehoben, in endlicher Zahl vorhanden. Es wird also nur eine endliche Zahl von Strömungscurven Wegen dieses Satzes siehe Beltrami, 1. c. p. 354. Ich will übrigens daran erinnern, dass man auch den Green'schen
Satz anschauungsmässig begründen kann. Vgl. Tait, On Green's
and allied other theorems, Edinburgh Transactions, 1869—70, p. 69 ff.
<TEI> <text> <body> <div n="1"> <div> <p> <hi rendition="#i"><pb facs="#f0041" n="33"/> solche Function nicht existirt, oder vielmehr, dass sie sich auf eine Constante reducirt.</hi> </p> <p>Und in der That ist dieser Beweis nicht schwierig. Was eine Durchführung desselben in strenger Form betrifft, so will ich mich darauf beschränken, zu bemerken, dass dieselbe mit Hülfe des verallgemeinerten <hi rendition="#g">Green</hi>'schen Satzes gelingt<note place="foot"><p>Wegen dieses Satzes siehe Beltrami, 1. c. p. 354.</p></note>. Die folgenden Betrachtungen sollen auf <hi rendition="#i">anschauungsmässigem Wege</hi> dieselbe Unmöglichkeit darthun. Mag man dieselben wegen der unbestimmten Form, die sie besitzen, vielleicht auch nicht als zwingend erachten<note place="foot"><p>Ich will übrigens daran erinnern, dass man auch den Green'schen Satz anschauungsmässig begründen kann. Vgl. Tait, On Green's and allied other theorems, Edinburgh Transactions, 1869—70, p. 69 ff.</p></note>, so scheint es doch nützlich, auch in dieser Weise den Gründen für das Bestehen jenes Theoremes nachzugehen.</p> <p>Wir mögen den besonderen Fall <formula notation="TeX">p = 0</formula> vorweg nehmen und uns also fragen, wesshalb auf der Kugel eine einförmige, überall endliche Strömung unmöglich ist. Das Zweckmässigste scheint es zu sein, den Verlauf der Strömungscurven auf der Kugel zu verfolgen. Da Unendlichkeitspuncte nicht auftreten sollen, so kann eine Strömungscurve nicht plötzlich abbrechen, wie es in einem Quellenpuncte, oder in einem algebraischen Unstetigkeitspuncte geschieht. Ueberdiess halte man vor Augen, dass neben einander herlaufende Strömungscurven nothwendig gleichen Strömungssinn haben. Man erkennt dann, dass nur zweierlei Arten von nicht abbrechenden Strömungscurven möglich sind. Entweder die Curve windet sich, je länger um so enger, um einen asymptotischen Punct — dann haben wir wieder einen Unendlichkeitspunct —, oder die Curve ist geschlossen. Ist aber <hi rendition="#i">eine</hi> Strömungscurve geschlossen, so sind es die nächstfolgenden auch. Dabei schliessen sie einen kleineren und kleineren Theil der Kugelfläche ein. Es kann also nicht fehlen, dass man zu einem Wirbelpuncte, d. h. abermals zu einem Unendlichkeitspuncte geführt wird. Eine überall endliche Strömung ist also in der That unmöglich. Allerdings haben wir der Möglichkeit nicht gedacht, die in dem Auftreten von Kreuzungspuncten liegt. Diese Puncte sind jedenfalls nur, wie oben hervorgehoben, in endlicher Zahl vorhanden. Es wird also nur eine endliche Zahl von Strömungscurven </p> </div> </div> </body> </text> </TEI> [33/0041]
solche Function nicht existirt, oder vielmehr, dass sie sich auf eine Constante reducirt.
Und in der That ist dieser Beweis nicht schwierig. Was eine Durchführung desselben in strenger Form betrifft, so will ich mich darauf beschränken, zu bemerken, dass dieselbe mit Hülfe des verallgemeinerten Green'schen Satzes gelingt . Die folgenden Betrachtungen sollen auf anschauungsmässigem Wege dieselbe Unmöglichkeit darthun. Mag man dieselben wegen der unbestimmten Form, die sie besitzen, vielleicht auch nicht als zwingend erachten , so scheint es doch nützlich, auch in dieser Weise den Gründen für das Bestehen jenes Theoremes nachzugehen.
Wir mögen den besonderen Fall [FORMEL] vorweg nehmen und uns also fragen, wesshalb auf der Kugel eine einförmige, überall endliche Strömung unmöglich ist. Das Zweckmässigste scheint es zu sein, den Verlauf der Strömungscurven auf der Kugel zu verfolgen. Da Unendlichkeitspuncte nicht auftreten sollen, so kann eine Strömungscurve nicht plötzlich abbrechen, wie es in einem Quellenpuncte, oder in einem algebraischen Unstetigkeitspuncte geschieht. Ueberdiess halte man vor Augen, dass neben einander herlaufende Strömungscurven nothwendig gleichen Strömungssinn haben. Man erkennt dann, dass nur zweierlei Arten von nicht abbrechenden Strömungscurven möglich sind. Entweder die Curve windet sich, je länger um so enger, um einen asymptotischen Punct — dann haben wir wieder einen Unendlichkeitspunct —, oder die Curve ist geschlossen. Ist aber eine Strömungscurve geschlossen, so sind es die nächstfolgenden auch. Dabei schliessen sie einen kleineren und kleineren Theil der Kugelfläche ein. Es kann also nicht fehlen, dass man zu einem Wirbelpuncte, d. h. abermals zu einem Unendlichkeitspuncte geführt wird. Eine überall endliche Strömung ist also in der That unmöglich. Allerdings haben wir der Möglichkeit nicht gedacht, die in dem Auftreten von Kreuzungspuncten liegt. Diese Puncte sind jedenfalls nur, wie oben hervorgehoben, in endlicher Zahl vorhanden. Es wird also nur eine endliche Zahl von Strömungscurven
Wegen dieses Satzes siehe Beltrami, 1. c. p. 354.
Ich will übrigens daran erinnern, dass man auch den Green'schen Satz anschauungsmässig begründen kann. Vgl. Tait, On Green's and allied other theorems, Edinburgh Transactions, 1869—70, p. 69 ff.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … gutenberg.org: Bereitstellung der Texttranskription und Auszeichnung in HTML.
(2012-11-06T13:54:31Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme aus gutenberg.org entsprechen muss.
gutenberg.org: Bereitstellung der Bilddigitalisate
(2012-11-06T13:54:31Z)
Frank Wiegand: Konvertierung von HTML nach XML/TEI gemäß DTA-Basisformat.
(2012-11-06T13:54:31Z)
Weitere Informationen:Anmerkungen zur Transkription:
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |