können uns also diesen dritten Punkt B als den Unterstützungs- oder Ruhepunkt vor- stellen und haben nun einen Hebel der zweiten Art.
§. 62.
Diesen Satz kann man sich ebenfalls leicht versinnlichen. Man stelle sich wieder ein Fig. 16. Tab. 1.Prisma H G vor, welehes in seiner Mitte C unterstützt ist. Man theile diess z. B. in 8 gleiche Theile, und es sey das Gewicht eines solchen Theiles = 1 Lb. Es werden demnach drei solche Theile H B = 3 Lb = P und die übrigen fünf Theile G B = 5 Lb = Q wiegen. Denkt man sich diese Gewichte 3 Lb und 5 Lb in ihren Schwerpunkten D und E befestigt, so bleibt alles im Gleichgewichte und die Unterlage trägt in der Mitte C die ganze Last des Hebels P + Q = 8 Lb = R. Diese 8 Lb binde man mit einem Faden an das Ende N eines gleicharmigen Hebels M N und den Punkt C an M, so wird der Faden C M mit einer gleichen Kraft R = P + Q = 8 Lb in die Höhe gezogen. Es werden also nicht nur die Gewichte P und Q um den Unterstützungspunkt C im Gleichgewichte seyn, son- dern auch die Zugkraft R in C den beiden Gewichten P und Q das Gleichgewicht halten und da sich in unserem Falle
[Formel 1]
[Formel 2]
und auf gleiche Art R : P oder 8 : 3 = H G : H B =
[Formel 3]
[Formel 4]
verhält, so folgt hieraus der allgemeine Satz, dass überhaupt drei an einem Hebel angebrachte Kräfte P, Q und R (oder P + Q) einander das Gleichgewicht halten, wenn sich je zwei derselben verhalten, wie umgekehrt ihre Entfernungen von der dritten Kraft.
§. 63.
Wir wollen nun die Bedingnisse des Gleichgewichtes untersuchen, wenn an einem Fig. 17.Hebel der ersten Art drei Kräfte P, Q und R angebracht sind, welche um einen gemein- schaftlichen Unterstützungspunkt einander das Gleichgewicht halten sollen. Zur Beant- wortung dieser Frage sey A O C ein mathematischer Hebel, der in O unterstützt ist; es ziehen auf der einen Seite des Unterstützungspunktes O die zwei Kräfte Q und R herab und diese sollen mit der dritten in A angebrachten Kraft P im Gleichgewichte seyn.
Man stelle sich die Kraft oder das Gewicht P in zwei Kräfte x und y zerlegt vor, d. h. man denke sich, es seyen statt P die zwei Gewichte x und y in A aufgehängt und von diesen Gewichten halte x das Gleichgewicht mit Q und y das Gleichgewicht mit R. Wir können demnach den Satz §. 58. vom einfachen Hebel anwenden, und erhalten die Gleichungen: x. A O = Q. B O y. A O = R. C O folglich, (x + y) A O = Q. B O + R. C O; da aber x + y = P ist, so haben wir auch P. A O = Q. B O + R. C O, d. h. das statische Moment des einen Ge- wichtes P muss der Summe der statischen Momente der beiden an dern Gewichte Q und R gleich seyn.
Hebel.
können uns also diesen dritten Punkt B als den Unterstützungs- oder Ruhepunkt vor- stellen und haben nun einen Hebel der zweiten Art.
§. 62.
Diesen Satz kann man sich ebenfalls leicht versinnlichen. Man stelle sich wieder ein Fig. 16. Tab. 1.Prisma H G vor, welehes in seiner Mitte C unterstützt ist. Man theile diess z. B. in 8 gleiche Theile, und es sey das Gewicht eines solchen Theiles = 1 ℔. Es werden demnach drei solche Theile H B = 3 ℔ = P und die übrigen fünf Theile G B = 5 ℔ = Q wiegen. Denkt man sich diese Gewichte 3 ℔ und 5 ℔ in ihren Schwerpunkten D und E befestigt, so bleibt alles im Gleichgewichte und die Unterlage trägt in der Mitte C die ganze Last des Hebels P + Q = 8 ℔ = R. Diese 8 ℔ binde man mit einem Faden an das Ende N eines gleicharmigen Hebels M N und den Punkt C an M, so wird der Faden C M mit einer gleichen Kraft R = P + Q = 8 ℔ in die Höhe gezogen. Es werden also nicht nur die Gewichte P und Q um den Unterstützungspunkt C im Gleichgewichte seyn, son- dern auch die Zugkraft R in C den beiden Gewichten P und Q das Gleichgewicht halten und da sich in unserem Falle
[Formel 1]
[Formel 2]
und auf gleiche Art R : P oder 8 : 3 = H G : H B =
[Formel 3]
[Formel 4]
verhält, so folgt hieraus der allgemeine Satz, dass überhaupt drei an einem Hebel angebrachte Kräfte P, Q und R (oder P + Q) einander das Gleichgewicht halten, wenn sich je zwei derselben verhalten, wie umgekehrt ihre Entfernungen von der dritten Kraft.
§. 63.
Wir wollen nun die Bedingnisse des Gleichgewichtes untersuchen, wenn an einem Fig. 17.Hebel der ersten Art drei Kräfte P, Q und R angebracht sind, welche um einen gemein- schaftlichen Unterstützungspunkt einander das Gleichgewicht halten sollen. Zur Beant- wortung dieser Frage sey A O C ein mathematischer Hebel, der in O unterstützt ist; es ziehen auf der einen Seite des Unterstützungspunktes O die zwei Kräfte Q und R herab und diese sollen mit der dritten in A angebrachten Kraft P im Gleichgewichte seyn.
Man stelle sich die Kraft oder das Gewicht P in zwei Kräfte x und y zerlegt vor, d. h. man denke sich, es seyen statt P die zwei Gewichte x und y in A aufgehängt und von diesen Gewichten halte x das Gleichgewicht mit Q und y das Gleichgewicht mit R. Wir können demnach den Satz §. 58. vom einfachen Hebel anwenden, und erhalten die Gleichungen: x. A O = Q. B O y. A O = R. C O folglich, (x + y) A O = Q. B O + R. C O; da aber x + y = P ist, so haben wir auch P. A O = Q. B O + R. C O, d. h. das statische Moment des einen Ge- wichtes P muss der Summe der statischen Momente der beiden an dern Gewichte Q und R gleich seyn.
<TEI><text><body><divn="1"><divn="2"><divn="3"><p><pbfacs="#f0110"n="80"/><fwplace="top"type="header"><hirendition="#i">Hebel.</hi></fw><lb/>
können uns also diesen dritten Punkt B als den Unterstützungs- oder Ruhepunkt vor-<lb/>
stellen und haben nun einen Hebel der zweiten Art.</p></div><lb/><divn="3"><head>§. 62.</head><lb/><p>Diesen Satz kann man sich ebenfalls leicht versinnlichen. Man stelle sich wieder ein<lb/><noteplace="left">Fig.<lb/>
16.<lb/>
Tab.<lb/>
1.</note>Prisma H G vor, welehes in seiner Mitte C unterstützt ist. Man theile diess z. B. in 8 gleiche<lb/>
Theile, und es sey das Gewicht eines solchen Theiles = 1 ℔. Es werden demnach drei<lb/>
solche Theile H B = 3 ℔ = P und die übrigen fünf Theile G B = 5 ℔ = Q wiegen.<lb/>
Denkt man sich diese Gewichte 3 ℔ und 5 ℔ in ihren Schwerpunkten D und E befestigt,<lb/>
so bleibt alles im Gleichgewichte und die Unterlage trägt in der Mitte C die ganze Last<lb/>
des Hebels P + Q = 8 ℔ = R. Diese 8 ℔ binde man mit einem Faden an das Ende N<lb/>
eines gleicharmigen Hebels M N und den Punkt C an M, so wird der Faden C M mit<lb/>
einer gleichen Kraft R = P + Q = 8 ℔ in die Höhe gezogen. Es werden also nicht<lb/>
nur die Gewichte P und Q um den Unterstützungspunkt C im Gleichgewichte seyn, son-<lb/>
dern auch die Zugkraft R in C den beiden Gewichten P und Q das Gleichgewicht halten<lb/>
und da sich in unserem Falle<lb/><formula/><hirendition="#et"><formula/></hi> und auf gleiche Art R : P oder 8 : 3 = H G : H B = <formula/><lb/><hirendition="#et"><formula/></hi> verhält, so folgt hieraus der allgemeine Satz, dass überhaupt drei an einem Hebel<lb/>
angebrachte Kräfte P, Q und R (oder P + Q) einander das Gleichgewicht halten, <hirendition="#g">wenn<lb/>
sich je zwei derselben verhalten, wie umgekehrt ihre Entfernungen<lb/>
von der dritten Kraft</hi>.</p></div><lb/><divn="3"><head>§. 63.</head><lb/><p>Wir wollen nun die Bedingnisse des Gleichgewichtes untersuchen, wenn an einem<lb/><noteplace="left">Fig.<lb/>
17.</note>Hebel der ersten Art drei Kräfte P, Q und R angebracht sind, welche um einen gemein-<lb/>
schaftlichen Unterstützungspunkt einander das Gleichgewicht halten sollen. Zur Beant-<lb/>
wortung dieser Frage sey A O C ein mathematischer Hebel, der in O unterstützt ist; es<lb/>
ziehen auf der einen Seite des Unterstützungspunktes O die zwei Kräfte Q und R herab<lb/>
und diese sollen mit der dritten in A angebrachten Kraft P im Gleichgewichte seyn.</p><lb/><p>Man stelle sich die Kraft oder das Gewicht P in zwei Kräfte x und y zerlegt vor, d. h.<lb/>
man denke sich, es seyen statt P die zwei Gewichte x und y in A aufgehängt und von diesen<lb/>
Gewichten halte x das Gleichgewicht mit Q und y das Gleichgewicht mit R. Wir können<lb/>
demnach den Satz §. 58. vom einfachen Hebel anwenden, und erhalten die Gleichungen:<lb/><hirendition="#et">x. A O = Q. B O<lb/><hirendition="#u">y. A O = R. C O folglich,</hi></hi><lb/>
(x + y) A O = Q. B O + R. C O; da aber x + y = P ist, so haben wir auch<lb/>
P. A O = Q. B O + R. C O, d. h. <hirendition="#g">das statische Moment des einen Ge-<lb/>
wichtes P muss der Summe der statischen Momente der beiden an<lb/>
dern Gewichte Q und R gleich seyn</hi>.</p></div><lb/></div></div></body></text></TEI>
[80/0110]
Hebel.
können uns also diesen dritten Punkt B als den Unterstützungs- oder Ruhepunkt vor-
stellen und haben nun einen Hebel der zweiten Art.
§. 62.
Diesen Satz kann man sich ebenfalls leicht versinnlichen. Man stelle sich wieder ein
Prisma H G vor, welehes in seiner Mitte C unterstützt ist. Man theile diess z. B. in 8 gleiche
Theile, und es sey das Gewicht eines solchen Theiles = 1 ℔. Es werden demnach drei
solche Theile H B = 3 ℔ = P und die übrigen fünf Theile G B = 5 ℔ = Q wiegen.
Denkt man sich diese Gewichte 3 ℔ und 5 ℔ in ihren Schwerpunkten D und E befestigt,
so bleibt alles im Gleichgewichte und die Unterlage trägt in der Mitte C die ganze Last
des Hebels P + Q = 8 ℔ = R. Diese 8 ℔ binde man mit einem Faden an das Ende N
eines gleicharmigen Hebels M N und den Punkt C an M, so wird der Faden C M mit
einer gleichen Kraft R = P + Q = 8 ℔ in die Höhe gezogen. Es werden also nicht
nur die Gewichte P und Q um den Unterstützungspunkt C im Gleichgewichte seyn, son-
dern auch die Zugkraft R in C den beiden Gewichten P und Q das Gleichgewicht halten
und da sich in unserem Falle
[FORMEL] [FORMEL] und auf gleiche Art R : P oder 8 : 3 = H G : H B = [FORMEL]
[FORMEL] verhält, so folgt hieraus der allgemeine Satz, dass überhaupt drei an einem Hebel
angebrachte Kräfte P, Q und R (oder P + Q) einander das Gleichgewicht halten, wenn
sich je zwei derselben verhalten, wie umgekehrt ihre Entfernungen
von der dritten Kraft.
Fig.
16.
Tab.
1.
§. 63.
Wir wollen nun die Bedingnisse des Gleichgewichtes untersuchen, wenn an einem
Hebel der ersten Art drei Kräfte P, Q und R angebracht sind, welche um einen gemein-
schaftlichen Unterstützungspunkt einander das Gleichgewicht halten sollen. Zur Beant-
wortung dieser Frage sey A O C ein mathematischer Hebel, der in O unterstützt ist; es
ziehen auf der einen Seite des Unterstützungspunktes O die zwei Kräfte Q und R herab
und diese sollen mit der dritten in A angebrachten Kraft P im Gleichgewichte seyn.
Fig.
17.
Man stelle sich die Kraft oder das Gewicht P in zwei Kräfte x und y zerlegt vor, d. h.
man denke sich, es seyen statt P die zwei Gewichte x und y in A aufgehängt und von diesen
Gewichten halte x das Gleichgewicht mit Q und y das Gleichgewicht mit R. Wir können
demnach den Satz §. 58. vom einfachen Hebel anwenden, und erhalten die Gleichungen:
x. A O = Q. B O
y. A O = R. C O folglich,
(x + y) A O = Q. B O + R. C O; da aber x + y = P ist, so haben wir auch
P. A O = Q. B O + R. C O, d. h. das statische Moment des einen Ge-
wichtes P muss der Summe der statischen Momente der beiden an
dern Gewichte Q und R gleich seyn.
Informationen zur CAB-Ansicht
Diese Ansicht bietet Ihnen die Darstellung des Textes in normalisierter Orthographie.
Diese Textvariante wird vollautomatisch erstellt und kann aufgrund dessen auch Fehler enthalten.
Alle veränderten Wortformen sind grau hinterlegt. Als fremdsprachliches Material erkannte
Textteile sind ausgegraut dargestellt.
Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 1: Mechanik fester Körper. Prag, 1831, S. 80. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/gerstner_mechanik01_1831/110>, abgerufen am 24.11.2024.
Alle Inhalte dieser Seite unterstehen, soweit nicht anders gekennzeichnet, einer
Creative-Commons-Lizenz.
Die Rechte an den angezeigten Bilddigitalisaten, soweit nicht anders gekennzeichnet, liegen bei den besitzenden Bibliotheken.
Weitere Informationen finden Sie in den DTA-Nutzungsbedingungen.
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf
diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken
dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder
nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der
Herabwürdigung der Menschenwürde gezeigt werden.
Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des
§ 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen
Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung
der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu
vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
Zitierempfehlung: Deutsches Textarchiv. Grundlage für ein Referenzkorpus der neuhochdeutschen Sprache. Herausgegeben von der Berlin-Brandenburgischen Akademie der Wissenschaften, Berlin 2024. URL: https://www.deutschestextarchiv.de/.