Littrow, Joseph Johann von: Die Wunder des Himmels, oder gemeinfaßliche Darstellung des Weltsystems. Bd. 3. Stuttgart, 1836.Massen und Dichtigkeiten der Himmelskörper. Wagen nachweisen lassen wird, weil das eigentliche Gewicht,was wir in die andere Wagschaale zu legen pflegen, um dadurch das Gewicht des Körpers zu finden, doch auch wieder ein Körper ist, der auch, und zwar auf dieselbe Weise, von der Schwere seines Planeten afficirt wird, und daher z. B. auf dem Monde auch nur den fünften Theil seines irdischen Gewichtes haben kann. Statt dieses Wortes Gewicht werden wir daher, der bessern Verständlichkeit wegen, das Wort Druck gebrauchen und sagen, daß ein Körper, der auf der Erde mit der Kraft von einem Pfunde auf seine Unterlage drückt, auf dem Monde nur mit 1/5 dieser Kraft, auf Jupiter mit 2 3/5 , und auf der Sonne mit 28 7/10 Pfun- den auf seine Unterlage drücken wird. §. 45. (Anwendung des Vorhergehenden auf künstliche Monde.) Die Antwort auf diese Frage ist für die, welche nur mit den Maſſen und Dichtigkeiten der Himmelskörper. Wagen nachweiſen laſſen wird, weil das eigentliche Gewicht,was wir in die andere Wagſchaale zu legen pflegen, um dadurch das Gewicht des Körpers zu finden, doch auch wieder ein Körper iſt, der auch, und zwar auf dieſelbe Weiſe, von der Schwere ſeines Planeten afficirt wird, und daher z. B. auf dem Monde auch nur den fünften Theil ſeines irdiſchen Gewichtes haben kann. Statt dieſes Wortes Gewicht werden wir daher, der beſſern Verſtändlichkeit wegen, das Wort Druck gebrauchen und ſagen, daß ein Körper, der auf der Erde mit der Kraft von einem Pfunde auf ſeine Unterlage drückt, auf dem Monde nur mit ⅕ dieſer Kraft, auf Jupiter mit 2⅗, und auf der Sonne mit 28 7/10 Pfun- den auf ſeine Unterlage drücken wird. §. 45. (Anwendung des Vorhergehenden auf künſtliche Monde.) Die Antwort auf dieſe Frage iſt für die, welche nur mit den <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <div n="4"> <p><pb facs="#f0084" n="72"/><fw place="top" type="header">Maſſen und Dichtigkeiten der Himmelskörper.</fw><lb/> Wagen nachweiſen laſſen wird, weil das eigentliche Gewicht,<lb/> was wir in die andere Wagſchaale zu legen pflegen, um dadurch<lb/> das Gewicht des Körpers zu finden, doch auch wieder ein Körper<lb/> iſt, der auch, und zwar auf dieſelbe Weiſe, von der Schwere ſeines<lb/> Planeten afficirt wird, und daher z. B. auf dem Monde auch<lb/> nur den fünften Theil ſeines irdiſchen Gewichtes haben kann.<lb/> Statt dieſes Wortes <hi rendition="#g">Gewicht</hi> werden wir daher, der beſſern<lb/> Verſtändlichkeit wegen, das Wort <hi rendition="#g">Druck</hi> gebrauchen und ſagen,<lb/> daß ein Körper, der auf der Erde mit der Kraft von einem Pfunde<lb/> auf ſeine Unterlage drückt, auf dem Monde nur mit ⅕ dieſer<lb/> Kraft, auf Jupiter mit 2⅗, und auf der Sonne mit 28 7/10 Pfun-<lb/> den auf ſeine Unterlage drücken wird.</p><lb/> <p>§. 45. (Anwendung des Vorhergehenden auf künſtliche Monde.)<lb/> Wir alle wiſſen, daß, wenn ein Stein aufwärts geworfen, oder<lb/> eine Kugel ſchief gegen den Horizont abgeſchoſſen wird, dieſe<lb/> Kugel eine krumme Linie beſchreibt, an deren Ende ſie wieder<lb/> zur Erde zurückfällt. Je größer die Kraft iſt, mit welcher die<lb/> Kugel aus der Mündung des Geſchützes getrieben wird, deſto<lb/> größer iſt auch der Bogen, den ſie über der Erde beſchreibt, und<lb/> es iſt klar, daß dieſe Kraft, die Ladung der Kanone, endlich ſo<lb/> groß werden könnte, daß die Kugel gar nicht mehr zur Erde zu-<lb/> rückfallen, ſondern daß ſie eine krumme Linie um die <hi rendition="#g">ganze</hi><lb/> Erde herum beſchreiben müßte. Dann würde ſie aber daſſelbe<lb/> thun, was der Mond ſchon lange thut, und wir würden auch in<lb/> der That auf dieſe Weiſe einen kleinen Mond mehr erhalten, ſo<lb/> daß wir am Ende dieſe Monde in beliebiger Menge, etwa wie<lb/> jetzt unſere Luftballone oder unſere Seifenblaſen, ſteigen laſſen<lb/> könnten, wenn wir nur unſern Geſchützen die dazu nöthige Kraft<lb/> zu ertheilen wüßten! Und wie groß müßte dieſe Kraft, wie groß<lb/> müßte die anfängliche Geſchwindigkeit ſeyn, um zu dieſem Zwecke<lb/> zu gelangen?</p><lb/> <p>Die Antwort auf dieſe Frage iſt für die, welche nur mit den<lb/> erſten Elementen der Mechanik bekannt ſind, ſehr leicht. — Wenn<lb/> man die Fallhöhe der Körper in der erſten Sekunde mit dem<lb/> Durchmeſſer des Planeten multiplicirt, und aus der ſo erhaltenen<lb/> Zahl die Quadratwurzel nimmt, ſo hat man die geſuchte anfäng-<lb/> liche Geſchwindigkeit der in Frage ſtehenden Kugel.</p><lb/> </div> </div> </div> </div> </body> </text> </TEI> [72/0084]
Maſſen und Dichtigkeiten der Himmelskörper.
Wagen nachweiſen laſſen wird, weil das eigentliche Gewicht,
was wir in die andere Wagſchaale zu legen pflegen, um dadurch
das Gewicht des Körpers zu finden, doch auch wieder ein Körper
iſt, der auch, und zwar auf dieſelbe Weiſe, von der Schwere ſeines
Planeten afficirt wird, und daher z. B. auf dem Monde auch
nur den fünften Theil ſeines irdiſchen Gewichtes haben kann.
Statt dieſes Wortes Gewicht werden wir daher, der beſſern
Verſtändlichkeit wegen, das Wort Druck gebrauchen und ſagen,
daß ein Körper, der auf der Erde mit der Kraft von einem Pfunde
auf ſeine Unterlage drückt, auf dem Monde nur mit ⅕ dieſer
Kraft, auf Jupiter mit 2⅗, und auf der Sonne mit 28 7/10 Pfun-
den auf ſeine Unterlage drücken wird.
§. 45. (Anwendung des Vorhergehenden auf künſtliche Monde.)
Wir alle wiſſen, daß, wenn ein Stein aufwärts geworfen, oder
eine Kugel ſchief gegen den Horizont abgeſchoſſen wird, dieſe
Kugel eine krumme Linie beſchreibt, an deren Ende ſie wieder
zur Erde zurückfällt. Je größer die Kraft iſt, mit welcher die
Kugel aus der Mündung des Geſchützes getrieben wird, deſto
größer iſt auch der Bogen, den ſie über der Erde beſchreibt, und
es iſt klar, daß dieſe Kraft, die Ladung der Kanone, endlich ſo
groß werden könnte, daß die Kugel gar nicht mehr zur Erde zu-
rückfallen, ſondern daß ſie eine krumme Linie um die ganze
Erde herum beſchreiben müßte. Dann würde ſie aber daſſelbe
thun, was der Mond ſchon lange thut, und wir würden auch in
der That auf dieſe Weiſe einen kleinen Mond mehr erhalten, ſo
daß wir am Ende dieſe Monde in beliebiger Menge, etwa wie
jetzt unſere Luftballone oder unſere Seifenblaſen, ſteigen laſſen
könnten, wenn wir nur unſern Geſchützen die dazu nöthige Kraft
zu ertheilen wüßten! Und wie groß müßte dieſe Kraft, wie groß
müßte die anfängliche Geſchwindigkeit ſeyn, um zu dieſem Zwecke
zu gelangen?
Die Antwort auf dieſe Frage iſt für die, welche nur mit den
erſten Elementen der Mechanik bekannt ſind, ſehr leicht. — Wenn
man die Fallhöhe der Körper in der erſten Sekunde mit dem
Durchmeſſer des Planeten multiplicirt, und aus der ſo erhaltenen
Zahl die Quadratwurzel nimmt, ſo hat man die geſuchte anfäng-
liche Geſchwindigkeit der in Frage ſtehenden Kugel.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2025 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |