Klein, Felix: Über Riemann's Theorie der Algebraischen Functionen und ihrer Integrale. Leipzig, 1882.erst wenig erforscht. Dagegen ist der Fall aus der Theorie der elliptischen Functionen genau bekannt. Ich erwähne die auf ihn bezüglichen Resultate, um mich im Folgenden bei aller Kürze doch präcise ausdrücken zu können. Sei vor allen Dingen hervorgehoben, dass für das algebraische Individuum (um diesen oben gebrauchten Ausdruck noch einmal zu verwenden) in der That durch eine (und nur eine) Grösse charakterisirt werden kann: die absolute Invariante . Wenn im Folgenden gesagt wird, dass zur Ueberführbarkeit zweier Gleichungen in einander die Gleichheit des Moduls nicht nur hinreichend, sondern auch erforderlich sei, so ist stets an die Invariante J gedacht. Statt ihrer verwendet man, wie bekannt, gewöhnlich das Legendre'sche , welches bei gegebenem J sechswerthig ist, so dass bei der Formulirung allgemeiner Sätze eine gewisse Schwerfälligkeit unvermeidbar scheint. In noch höherem Maasse ist dies der Fall, wenn man das Periodenverhältniss des elliptischen Integrals erster Gattung, wie dies in anderer Beziehung vielfach zweckmässig ist, als Modul einführt. Jedesmal unendlich viele Werthe des Moduls bezeichnen dann dasselbe algebraische Individuum. §. 20. Conforme Abbildung geschlossener Flächen auf sich selbst. In den nun noch folgenden Paragraphen mögen die entwickelten Principien, wie in Aussicht gestellt, nach der geometrischen Seite verfolgt werden, um wenigstens die Grundzüge für eine Theorie der conformen Abbildung von Flächen auf einander zu gewinnen und so den Andeutungen zu Vergl. die Darstellung im 14. Bande der mathematischen Annalen,
p. 112 ff. Die im Texte aufzustellenden Sätze finden sich explicite grösstentheils
in der Literatur nicht vor. Wegen der Flächen vergleiche
man den bereits citirten Aufsatz von Schwarz (Berliner Monatsberichte
1870). Man sehe ferner eine Arbeit von Schottky: Ueber die conforme
Abbildung mehrfach zusammenhängender Flächen}, die als Berliner
Inaugural-Dissertation 1875 erschien und später (1877) in umgearbeiteter
Form in Borchardts Journal Bd. 83 abgedruckt wurde. Es handelt sich
in derselben um solche p-fach zusammenhängende ebene Bereiche,
welche von Randcurven begränzt werden.
erst wenig erforscht. Dagegen ist der Fall aus der Theorie der elliptischen Functionen genau bekannt. Ich erwähne die auf ihn bezüglichen Resultate, um mich im Folgenden bei aller Kürze doch präcise ausdrücken zu können. Sei vor allen Dingen hervorgehoben, dass für das algebraische Individuum (um diesen oben gebrauchten Ausdruck noch einmal zu verwenden) in der That durch eine (und nur eine) Grösse charakterisirt werden kann: die absolute Invariante . Wenn im Folgenden gesagt wird, dass zur Ueberführbarkeit zweier Gleichungen in einander die Gleichheit des Moduls nicht nur hinreichend, sondern auch erforderlich sei, so ist stets an die Invariante J gedacht. Statt ihrer verwendet man, wie bekannt, gewöhnlich das Legendre'sche , welches bei gegebenem J sechswerthig ist, so dass bei der Formulirung allgemeiner Sätze eine gewisse Schwerfälligkeit unvermeidbar scheint. In noch höherem Maasse ist dies der Fall, wenn man das Periodenverhältniss des elliptischen Integrals erster Gattung, wie dies in anderer Beziehung vielfach zweckmässig ist, als Modul einführt. Jedesmal unendlich viele Werthe des Moduls bezeichnen dann dasselbe algebraische Individuum. §. 20. Conforme Abbildung geschlossener Flächen auf sich selbst. In den nun noch folgenden Paragraphen mögen die entwickelten Principien, wie in Aussicht gestellt, nach der geometrischen Seite verfolgt werden, um wenigstens die Grundzüge für eine Theorie der conformen Abbildung von Flächen auf einander zu gewinnen und so den Andeutungen zu Vergl. die Darstellung im 14. Bande der mathematischen Annalen,
p. 112 ff. Die im Texte aufzustellenden Sätze finden sich explicite grösstentheils
in der Literatur nicht vor. Wegen der Flächen vergleiche
man den bereits citirten Aufsatz von Schwarz (Berliner Monatsberichte
1870). Man sehe ferner eine Arbeit von Schottky: Ueber die conforme
Abbildung mehrfach zusammenhängender Flächen}, die als Berliner
Inaugural-Dissertation 1875 erschien und später (1877) in umgearbeiteter
Form in Borchardts Journal Bd. 83 abgedruckt wurde. Es handelt sich
in derselben um solche p-fach zusammenhängende ebene Bereiche,
welche von Randcurven begränzt werden.
<TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0077" n="69"/> erst wenig erforscht. Dagegen ist der Fall <formula notation="TeX">p = 1</formula> aus der Theorie der elliptischen Functionen genau bekannt. Ich erwähne die auf ihn bezüglichen Resultate, um mich im Folgenden bei aller Kürze doch präcise ausdrücken zu können. Sei vor allen Dingen hervorgehoben, dass für <formula notation="TeX">p = 1</formula> das algebraische Individuum (um diesen oben gebrauchten Ausdruck noch einmal zu verwenden) in der That durch eine (und nur eine) Grösse charakterisirt werden kann: <hi rendition="#i">die absolute Invariante</hi> <formula notation="TeX">J = \dfrac{{g_2}^3}{\Delta</formula><note place="foot"><p>Vergl. die Darstellung im 14. Bande der mathematischen Annalen, p. 112 ff.</p></note>. Wenn im Folgenden gesagt wird, dass zur Ueberführbarkeit zweier Gleichungen <formula notation="TeX">p = 1</formula> in einander die Gleichheit des Moduls nicht nur hinreichend, sondern auch erforderlich sei, so ist stets an die Invariante <hi rendition="#i">J</hi> gedacht. Statt ihrer verwendet man, wie bekannt, gewöhnlich das <hi rendition="#i">Legendre</hi>'sche <formula notation="TeX">\varkappa^2</formula>, welches bei gegebenem <hi rendition="#i">J</hi> sechswerthig ist, so dass bei der Formulirung allgemeiner Sätze eine gewisse Schwerfälligkeit unvermeidbar scheint. In noch höherem Maasse ist dies der Fall, wenn man das Periodenverhältniss <formula notation="TeX">\dfrac{\omega_1}{\omega_2}</formula> des elliptischen Integrals erster Gattung, wie dies in anderer Beziehung vielfach zweckmässig ist, als Modul einführt. Jedesmal unendlich viele Werthe des Moduls bezeichnen dann dasselbe algebraische Individuum.</p> </div> <div> <head>§. 20. Conforme Abbildung geschlossener Flächen auf sich selbst.</head><lb/> <p>In den nun noch folgenden Paragraphen mögen die entwickelten Principien, wie in Aussicht gestellt, nach der geometrischen Seite verfolgt werden, um wenigstens die Grundzüge für eine Theorie <hi rendition="#i">der conformen Abbildung</hi> von Flächen auf einander zu gewinnen<note place="foot"><p>Die im Texte aufzustellenden Sätze finden sich explicite grösstentheils in der Literatur nicht vor. Wegen der Flächen <formula notation="TeX">p = 0</formula> vergleiche man den bereits citirten Aufsatz von Schwarz (Berliner Monatsberichte 1870). Man sehe ferner eine Arbeit von Schottky: <hi rendition="#i">Ueber die conforme Abbildung mehrfach zusammenhängender Flächen</hi>}, die als Berliner Inaugural-Dissertation 1875 erschien und später (1877) in umgearbeiteter Form in Borchardts Journal Bd. 83 abgedruckt wurde. Es handelt sich in derselben um solche <hi rendition="#i">p</hi>-fach zusammenhängende ebene Bereiche, welche von <formula notation="TeX">(p + 1)</formula> Randcurven begränzt werden.</p></note> und so den Andeutungen zu </p> </div> </div> </body> </text> </TEI> [69/0077]
erst wenig erforscht. Dagegen ist der Fall [FORMEL] aus der Theorie der elliptischen Functionen genau bekannt. Ich erwähne die auf ihn bezüglichen Resultate, um mich im Folgenden bei aller Kürze doch präcise ausdrücken zu können. Sei vor allen Dingen hervorgehoben, dass für [FORMEL] das algebraische Individuum (um diesen oben gebrauchten Ausdruck noch einmal zu verwenden) in der That durch eine (und nur eine) Grösse charakterisirt werden kann: die absolute Invariante [FORMEL] . Wenn im Folgenden gesagt wird, dass zur Ueberführbarkeit zweier Gleichungen [FORMEL] in einander die Gleichheit des Moduls nicht nur hinreichend, sondern auch erforderlich sei, so ist stets an die Invariante J gedacht. Statt ihrer verwendet man, wie bekannt, gewöhnlich das Legendre'sche [FORMEL], welches bei gegebenem J sechswerthig ist, so dass bei der Formulirung allgemeiner Sätze eine gewisse Schwerfälligkeit unvermeidbar scheint. In noch höherem Maasse ist dies der Fall, wenn man das Periodenverhältniss [FORMEL] des elliptischen Integrals erster Gattung, wie dies in anderer Beziehung vielfach zweckmässig ist, als Modul einführt. Jedesmal unendlich viele Werthe des Moduls bezeichnen dann dasselbe algebraische Individuum.
§. 20. Conforme Abbildung geschlossener Flächen auf sich selbst.
In den nun noch folgenden Paragraphen mögen die entwickelten Principien, wie in Aussicht gestellt, nach der geometrischen Seite verfolgt werden, um wenigstens die Grundzüge für eine Theorie der conformen Abbildung von Flächen auf einander zu gewinnen und so den Andeutungen zu
Vergl. die Darstellung im 14. Bande der mathematischen Annalen, p. 112 ff.
Die im Texte aufzustellenden Sätze finden sich explicite grösstentheils in der Literatur nicht vor. Wegen der Flächen [FORMEL] vergleiche man den bereits citirten Aufsatz von Schwarz (Berliner Monatsberichte 1870). Man sehe ferner eine Arbeit von Schottky: Ueber die conforme Abbildung mehrfach zusammenhängender Flächen}, die als Berliner Inaugural-Dissertation 1875 erschien und später (1877) in umgearbeiteter Form in Borchardts Journal Bd. 83 abgedruckt wurde. Es handelt sich in derselben um solche p-fach zusammenhängende ebene Bereiche, welche von [FORMEL] Randcurven begränzt werden.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … gutenberg.org: Bereitstellung der Texttranskription und Auszeichnung in HTML.
(2012-11-06T13:54:31Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme aus gutenberg.org entsprechen muss.
gutenberg.org: Bereitstellung der Bilddigitalisate
(2012-11-06T13:54:31Z)
Frank Wiegand: Konvertierung von HTML nach XML/TEI gemäß DTA-Basisformat.
(2012-11-06T13:54:31Z)
Weitere Informationen:Anmerkungen zur Transkription:
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |