Klein, Felix: Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen, 1872.Ebene eine Ebene zuordnen: sie sind diejenigen Puncttrans- §. 9. Von der Gruppe aller Berührungstransformationen. Berührungstransformationen sind zwar in einzelnen Unter einer Berührungstransformation hat man, analy- 1) Vergl. bes. die bereits citirte Arbeit: Ueber partielle Differen-
tialgleichungen und Complexe. Math. Ann. V. Die im Texte gegebenen Ausführungen betr. partielle Differentialgleichungen habe ich wesent- lich mündlichen Mittheilungen von Lie entnommen; vergl. dessen Note: Zur Theorie partieller Differentialgleichungen. Göttinger Nachrichten. Oct. 1872. Ebene eine Ebene zuordnen: sie sind diejenigen Puncttrans- §. 9. Von der Gruppe aller Berührungstransformationen. Berührungstransformationen sind zwar in einzelnen Unter einer Berührungstransformation hat man, analy- 1) Vergl. bes. die bereits citirte Arbeit: Ueber partielle Differen-
tialgleichungen und Complexe. Math. Ann. V. Die im Texte gegebenen Ausführungen betr. partielle Differentialgleichungen habe ich wesent- lich mündlichen Mittheilungen von Lie entnommen; vergl. dessen Note: Zur Theorie partieller Differentialgleichungen. Göttinger Nachrichten. Oct. 1872. <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0040" n="32"/> Ebene eine Ebene zuordnen: sie sind diejenigen Puncttrans-<lb/> formationen, vermöge deren die Mannigfaltigkeit der Ebenen<lb/> (oder, was auf dasselbe hinaus kommt, der geraden Linien)<lb/> erhalten bleibt. <hi rendition="#g">Die projectivische Geometrie ist<lb/> aus der Geometrie aller Puncttransformation<lb/> ebenso durch Adjunction der Mannigfaltigkeit<lb/> der Ebenen zu gewinnen, wie die elementare<lb/> Geometrie aus der projectivischen durch Ad-<lb/> junction des unendlich fernen Kugelkreises</hi>.<lb/> Insbesondere haben wir z. B. vom Standpuncte aller Punct-<lb/> transformationen die Bezeichnung einer Fläche als einer<lb/> algebraischen von einer gewissen Ordnung als eine invari-<lb/> ante Beziehung zur Mannigfaltigkeit der Ebenen aufzufas-<lb/> sen. Es wird dies recht deutlich, wenn man, mit <hi rendition="#g">Grass-<lb/> mann</hi>, die Erzeugung der algebraischen Gebilde an ihre<lb/> lineale Construction knüpft.</p> </div> </div><lb/> <div n="1"> <head> <hi rendition="#b">§. 9.<lb/> Von der Gruppe aller Berührungstransformationen.</hi> </head><lb/> <p>Berührungstransformationen sind zwar in einzelnen<lb/> Fällen schon lange betrachtet; auch hat <hi rendition="#g">Jacobi</hi> bei ana-<lb/> lytischen Untersuchungen bereits von den allgemeinsten<lb/> Berührungstransformationen Gebrauch gemacht; aber in die<lb/> lebendige geometrische Anschauung wurden sie erst durch<lb/> neuere Arbeiten von <hi rendition="#g">Lie</hi> eingeführt <note place="foot" n="1)">Vergl. bes. die bereits citirte Arbeit: Ueber partielle Differen-<lb/> tialgleichungen und Complexe. Math. Ann. V. Die im Texte gegebenen<lb/> Ausführungen betr. partielle Differentialgleichungen habe ich wesent-<lb/> lich mündlichen Mittheilungen von <hi rendition="#g">Lie</hi> entnommen; vergl. dessen Note:<lb/> Zur Theorie partieller Differentialgleichungen. Göttinger Nachrichten.<lb/> Oct. 1872.</note>. Es ist daher wohl<lb/> nicht überflüssig, hier ausdrücklich auseinanderzusetzen,<lb/> was eine Berührungstransformation ist, wobei wir uns, wie<lb/> immer, auf den Punctraum mit seinen drei Dimensionen<lb/> beschränken.</p><lb/> <p>Unter einer Berührungstransformation hat man, analy-<lb/> tisch zu reden, jede Substitution zu verstehen, welche die<lb/></p> </div> </body> </text> </TEI> [32/0040]
Ebene eine Ebene zuordnen: sie sind diejenigen Puncttrans-
formationen, vermöge deren die Mannigfaltigkeit der Ebenen
(oder, was auf dasselbe hinaus kommt, der geraden Linien)
erhalten bleibt. Die projectivische Geometrie ist
aus der Geometrie aller Puncttransformation
ebenso durch Adjunction der Mannigfaltigkeit
der Ebenen zu gewinnen, wie die elementare
Geometrie aus der projectivischen durch Ad-
junction des unendlich fernen Kugelkreises.
Insbesondere haben wir z. B. vom Standpuncte aller Punct-
transformationen die Bezeichnung einer Fläche als einer
algebraischen von einer gewissen Ordnung als eine invari-
ante Beziehung zur Mannigfaltigkeit der Ebenen aufzufas-
sen. Es wird dies recht deutlich, wenn man, mit Grass-
mann, die Erzeugung der algebraischen Gebilde an ihre
lineale Construction knüpft.
§. 9.
Von der Gruppe aller Berührungstransformationen.
Berührungstransformationen sind zwar in einzelnen
Fällen schon lange betrachtet; auch hat Jacobi bei ana-
lytischen Untersuchungen bereits von den allgemeinsten
Berührungstransformationen Gebrauch gemacht; aber in die
lebendige geometrische Anschauung wurden sie erst durch
neuere Arbeiten von Lie eingeführt 1). Es ist daher wohl
nicht überflüssig, hier ausdrücklich auseinanderzusetzen,
was eine Berührungstransformation ist, wobei wir uns, wie
immer, auf den Punctraum mit seinen drei Dimensionen
beschränken.
Unter einer Berührungstransformation hat man, analy-
tisch zu reden, jede Substitution zu verstehen, welche die
1) Vergl. bes. die bereits citirte Arbeit: Ueber partielle Differen-
tialgleichungen und Complexe. Math. Ann. V. Die im Texte gegebenen
Ausführungen betr. partielle Differentialgleichungen habe ich wesent-
lich mündlichen Mittheilungen von Lie entnommen; vergl. dessen Note:
Zur Theorie partieller Differentialgleichungen. Göttinger Nachrichten.
Oct. 1872.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |