Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 1: Mechanik fester Körper. Prag, 1831.Eigene Versuche über die Biegung des gewalzten Eisens. Versuch Nro. 5. [Tabelle] Die aus allen 17 Beob- Da diese Schiene noch ihre vollkommene Elasticität zeigte, wurde nachstehender Versuch Nro. 6. [Tabelle] Die aus den ersten Eigene Versuche über die Biegung des gewalzten Eisens. Versuch Nro. 5. [Tabelle] Die aus allen 17 Beob- Da diese Schiene noch ihre vollkommene Elasticität zeigte, wurde nachstehender Versuch Nro. 6. [Tabelle] Die aus den ersten <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <div n="4"> <pb facs="#f0386" n="356"/> <fw place="top" type="header"> <hi rendition="#i">Eigene Versuche über die Biegung des gewalzten Eisens.</hi> </fw><lb/> <div n="5"> <head><hi rendition="#g">Versuch</hi> N<hi rendition="#sup">ro.</hi> 5.</head><lb/> <table> <row> <cell/> </row> </table> <p>Die aus allen 17 Beob-<lb/> achtungen abgeleitete<lb/> Gleichung für die Bie-<lb/> gung ist 30 u =<lb/> 1214 <formula/>,<lb/> worin A = 0,<hi rendition="#sub">378072</hi> und<lb/> B = <formula/> ist. Der<lb/> Coefficient für die Bie-<lb/> gung bei vollkommener<lb/> Elasticität und der An-<lb/> nahme einer Senkung<lb/> von 1 : 480 ist μ = 200907.</p><lb/> <p>Da diese Schiene noch ihre vollkommene Elasticität zeigte, wurde nachstehender<lb/> Versuch vorgenommen.</p> </div><lb/> <div n="5"> <head><hi rendition="#g">Versuch</hi> N<hi rendition="#sup">ro.</hi> 6.</head><lb/> <table> <row> <cell/> </row> </table> <p>Die aus den ersten<lb/> 10 Beobachtungen ab-<lb/> geleitete Gleichung für<lb/> die Biegung ist 30 u =<lb/> 2583 <formula/>,<lb/> worin A = 0,<hi rendition="#sub">369888</hi> und<lb/> B = <formula/> ist. Der<lb/> Coefficient für die Bie-<lb/> gung bei vollkommener<lb/> Elasticität und der An-<lb/> nahme einer Senkung<lb/> 1 : 480 ist μ = 196558.</p><lb/> </div> </div> </div> </div> </div> </body> </text> </TEI> [356/0386]
Eigene Versuche über die Biegung des gewalzten Eisens.
Versuch Nro. 5.
Die aus allen 17 Beob-
achtungen abgeleitete
Gleichung für die Bie-
gung ist 30 u =
1214 [FORMEL],
worin A = 0,378072 und
B = [FORMEL] ist. Der
Coefficient für die Bie-
gung bei vollkommener
Elasticität und der An-
nahme einer Senkung
von 1 : 480 ist μ = 200907.
Da diese Schiene noch ihre vollkommene Elasticität zeigte, wurde nachstehender
Versuch vorgenommen.
Versuch Nro. 6.
Die aus den ersten
10 Beobachtungen ab-
geleitete Gleichung für
die Biegung ist 30 u =
2583 [FORMEL],
worin A = 0,369888 und
B = [FORMEL] ist. Der
Coefficient für die Bie-
gung bei vollkommener
Elasticität und der An-
nahme einer Senkung
1 : 480 ist μ = 196558.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2025 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |