Euler, Leonhard: Vollständige Anleitung zur Algebra. Bd. 2. St. Petersburg, 1770.Von den Algebraischen Gleichungen. dene Gleichung seyn mag, worzu die Regeln im fol-genden gegeben werden sollen. 12. Wir wollen bey den leichtesten Fällen anfangen x + 9 = 16, so sieht man daß x = 7. Es sey aber auf eine allgemeine Art x + a = b, 13. Wann die gefundene Gleichung ist x - a = b, so Eben so verfährt man, wann die erste Gleichung Und aus dieser Gleichung x - 8a = 20 - 6a be- Und
Von den Algebraiſchen Gleichungen. dene Gleichung ſeyn mag, worzu die Regeln im fol-genden gegeben werden ſollen. 12. Wir wollen bey den leichteſten Faͤllen anfangen x + 9 = 16, ſo ſieht man daß x = 7. Es ſey aber auf eine allgemeine Art x + a = b, 13. Wann die gefundene Gleichung iſt x - a = b, ſo Eben ſo verfaͤhrt man, wann die erſte Gleichung Und aus dieſer Gleichung x - 8a = 20 - 6a be- Und
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0013" n="11"/><fw place="top" type="header"><hi rendition="#b">Von den Algebraiſchen Gleichungen.</hi></fw><lb/> dene Gleichung ſeyn mag, worzu die Regeln im fol-<lb/> genden gegeben werden ſollen.</p> </div><lb/> <div n="3"> <head>12.</head><lb/> <p>Wir wollen bey den leichteſten Faͤllen anfangen<lb/> und erſtlich ſetzen, man ſey auf dieſe Gleichung gekom-<lb/> men:</p><lb/> <p><hi rendition="#aq">x</hi> + 9 = 16, ſo ſieht man daß <hi rendition="#aq">x</hi> = 7.</p><lb/> <p>Es ſey aber auf eine allgemeine Art <hi rendition="#aq">x + a = b</hi>,<lb/> wo <hi rendition="#aq">a</hi> und <hi rendition="#aq">b</hi> bekante Zahlen andeuten, dieſelben moͤ-<lb/> gen heißen wie ſie wollen. Hier muß man alſo bey-<lb/> derſeits <hi rendition="#aq">a</hi> ſubtrahiren und da bekommt man dieſe Glei-<lb/> chung <hi rendition="#aq">x = b - a</hi> welche uns den Werth von <hi rendition="#aq">x</hi> an-<lb/> zeigt.</p> </div><lb/> <div n="3"> <head>13.</head><lb/> <p>Wann die gefundene Gleichung iſt <hi rendition="#aq">x - a = b</hi>, ſo<lb/> addire man beyderſeits <hi rendition="#aq">a</hi>, ſo kommt <hi rendition="#aq">x = a + b</hi>, wel-<lb/> ches der geſuchte Werth von <hi rendition="#aq">x</hi> iſt.</p><lb/> <p>Eben ſo verfaͤhrt man, wann die erſte Gleichung<lb/> alſo beſchaffen iſt <hi rendition="#aq">x - a = aa + 1</hi>, dann da wird<lb/><hi rendition="#aq">x = aa + a + 1</hi>.</p><lb/> <p>Und aus dieſer Gleichung <hi rendition="#aq">x - 8a = 20 - 6a</hi> be-<lb/> kommt man <hi rendition="#aq">x = 20 - 6a + 8a</hi> oder <hi rendition="#aq">x = 20 + 2a</hi>.</p><lb/> <fw place="bottom" type="catch">Und</fw><lb/> </div> </div> </div> </body> </text> </TEI> [11/0013]
Von den Algebraiſchen Gleichungen.
dene Gleichung ſeyn mag, worzu die Regeln im fol-
genden gegeben werden ſollen.
12.
Wir wollen bey den leichteſten Faͤllen anfangen
und erſtlich ſetzen, man ſey auf dieſe Gleichung gekom-
men:
x + 9 = 16, ſo ſieht man daß x = 7.
Es ſey aber auf eine allgemeine Art x + a = b,
wo a und b bekante Zahlen andeuten, dieſelben moͤ-
gen heißen wie ſie wollen. Hier muß man alſo bey-
derſeits a ſubtrahiren und da bekommt man dieſe Glei-
chung x = b - a welche uns den Werth von x an-
zeigt.
13.
Wann die gefundene Gleichung iſt x - a = b, ſo
addire man beyderſeits a, ſo kommt x = a + b, wel-
ches der geſuchte Werth von x iſt.
Eben ſo verfaͤhrt man, wann die erſte Gleichung
alſo beſchaffen iſt x - a = aa + 1, dann da wird
x = aa + a + 1.
Und aus dieſer Gleichung x - 8a = 20 - 6a be-
kommt man x = 20 - 6a + 8a oder x = 20 + 2a.
Und
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |