Boltzmann, Ludwig: Vorlesungen über Gastheorie. Bd. 1. Leipzig, 1896.I. Abschnitt. [Gleich. 27] § 5. Beweis, dass die Maxwell'sche Geschwindigkeits- vertheilung die einzig mögliche ist. Wir werden uns mit der Auflösung der Gleichungen 27, Wir betrachten dasselbe Gasgemisch wie früher und be- I. Abschnitt. [Gleich. 27] § 5. Beweis, dass die Maxwell’sche Geschwindigkeits- vertheilung die einzig mögliche ist. Wir werden uns mit der Auflösung der Gleichungen 27, Wir betrachten dasselbe Gasgemisch wie früher und be- <TEI> <text> <body> <div n="1"> <pb facs="#f0046" n="32"/> <fw place="top" type="header">I. Abschnitt. [Gleich. 27]</fw><lb/> <div n="2"> <head>§ 5. <hi rendition="#g">Beweis, dass die Maxwell’sche Geschwindigkeits-<lb/> vertheilung die einzig mögliche ist</hi>.</head><lb/> <p>Wir werden uns mit der Auflösung der Gleichungen 27,<lb/> welche keine besondere Schwierigkeit bietet, später beschäftigen.<lb/> Sie führen mit Nothwendigkeit auf das bekannte <hi rendition="#g">Maxwell</hi>’sche<lb/> Geschwindigkeitsvertheilungsgesetz. Für dasselbe verschwinden<lb/> also die beiden Grössen <hi rendition="#i">∂ f / ∂ t</hi> und <hi rendition="#i">∂ F / ∂ t</hi>, weil für sämmt-<lb/> liche Integrale die Grösse unter dem Integralzeichen identisch<lb/> verschwindet. Es ist somit bewiesen, dass die <hi rendition="#g">Maxwell</hi>’sche<lb/> Geschwindigkeitsvertheilung, wenn sie einmal unter den Mole-<lb/> külen besteht, durch die Zusammenstösse nicht weiter ver-<lb/> ändert wird. Dagegen ist noch nicht der Beweis geliefert,<lb/> dass nicht auch noch durch andere Functionen die beiden<lb/> Ausdrücke 25 und 26 zum Verschwinden gebracht werden<lb/> können, ohne dass in allen Integralen die Grösse unter dem<lb/> Integralzeichen für alle Werthe der Integrationsvariabeln ver-<lb/> schwindet. Man mag derartigen Bedenken so wenig Gewicht<lb/> beilegen, als man will, ich fand mich veranlasst, sie durch<lb/> einen besonderen Beweis zu widerlegen. Da nun derselbe<lb/> eine, wie mir scheint, nicht uninteressante Beziehung zum<lb/> Entropieprincipe hat, so will ich ihn hier in der Form, die<lb/> ihm durch H. A. <hi rendition="#g">Lorentz</hi> gegeben wurde, wiedergeben.</p><lb/> <p>Wir betrachten dasselbe Gasgemisch wie früher und be-<lb/> halten auch alle früher gebrauchten Bezeichnungen bei. Ferner<lb/> bezeichnen wir mit <hi rendition="#i">l f</hi> und <hi rendition="#i">l F</hi> die natürlichen Logarithmen<lb/> der Functionen <hi rendition="#i">f</hi> und <hi rendition="#i">F</hi>. Das Resultat, welches wir erhalten,<lb/> wenn wir in <hi rendition="#i">l f</hi> für <hi rendition="#i">ξ, η, ζ</hi> die Geschwindigkeitscomponenten<lb/> einsetzen, welche einem bestimmten Gasmoleküle von der<lb/> Masse <hi rendition="#i">m</hi> zu einer bestimmten Zeit <hi rendition="#i">t</hi> zukommen, bezeichnen<lb/> wir als den Werth der Logarithmusfunction, welche dem be-<lb/> treffenden Moleküle zur betreffenden Zeit entspricht. Ganz<lb/> analog erhalten wir den Werth der Logarithmusfunction, wel-<lb/> cher irgend einem Moleküle <hi rendition="#i">m</hi><hi rendition="#sub">1</hi> zu irgend einer Zeit entspricht,<lb/> indem wir in <hi rendition="#i">l F</hi><hi rendition="#sub">1</hi> die Geschwindigkeitscomponenten <hi rendition="#i">ξ</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">η</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">ζ</hi><hi rendition="#sub">1</hi><lb/> des betreffenden Moleküls <hi rendition="#i">m</hi><hi rendition="#sub">1</hi> zur betreffenden Zeit einsetzen.<lb/> Wir wollen nun die Summe <hi rendition="#i">H</hi> aller Werthe der Logarithmus-<lb/> function berechnen, welche zu einer bestimmten Zeit allen in<lb/></p> </div> </div> </body> </text> </TEI> [32/0046]
I. Abschnitt. [Gleich. 27]
§ 5. Beweis, dass die Maxwell’sche Geschwindigkeits-
vertheilung die einzig mögliche ist.
Wir werden uns mit der Auflösung der Gleichungen 27,
welche keine besondere Schwierigkeit bietet, später beschäftigen.
Sie führen mit Nothwendigkeit auf das bekannte Maxwell’sche
Geschwindigkeitsvertheilungsgesetz. Für dasselbe verschwinden
also die beiden Grössen ∂ f / ∂ t und ∂ F / ∂ t, weil für sämmt-
liche Integrale die Grösse unter dem Integralzeichen identisch
verschwindet. Es ist somit bewiesen, dass die Maxwell’sche
Geschwindigkeitsvertheilung, wenn sie einmal unter den Mole-
külen besteht, durch die Zusammenstösse nicht weiter ver-
ändert wird. Dagegen ist noch nicht der Beweis geliefert,
dass nicht auch noch durch andere Functionen die beiden
Ausdrücke 25 und 26 zum Verschwinden gebracht werden
können, ohne dass in allen Integralen die Grösse unter dem
Integralzeichen für alle Werthe der Integrationsvariabeln ver-
schwindet. Man mag derartigen Bedenken so wenig Gewicht
beilegen, als man will, ich fand mich veranlasst, sie durch
einen besonderen Beweis zu widerlegen. Da nun derselbe
eine, wie mir scheint, nicht uninteressante Beziehung zum
Entropieprincipe hat, so will ich ihn hier in der Form, die
ihm durch H. A. Lorentz gegeben wurde, wiedergeben.
Wir betrachten dasselbe Gasgemisch wie früher und be-
halten auch alle früher gebrauchten Bezeichnungen bei. Ferner
bezeichnen wir mit l f und l F die natürlichen Logarithmen
der Functionen f und F. Das Resultat, welches wir erhalten,
wenn wir in l f für ξ, η, ζ die Geschwindigkeitscomponenten
einsetzen, welche einem bestimmten Gasmoleküle von der
Masse m zu einer bestimmten Zeit t zukommen, bezeichnen
wir als den Werth der Logarithmusfunction, welche dem be-
treffenden Moleküle zur betreffenden Zeit entspricht. Ganz
analog erhalten wir den Werth der Logarithmusfunction, wel-
cher irgend einem Moleküle m1 zu irgend einer Zeit entspricht,
indem wir in l F1 die Geschwindigkeitscomponenten ξ1, η1, ζ1
des betreffenden Moleküls m1 zur betreffenden Zeit einsetzen.
Wir wollen nun die Summe H aller Werthe der Logarithmus-
function berechnen, welche zu einer bestimmten Zeit allen in
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |