Bion, Nicolas: Dritte Eröfnung der neuen mathematischen Werkschule (Übers. Johann Gabriel Doppelmayr). Bd. 3. Nürnberg, 1765.IV. Nutz. Die gerade Aufsteigung (Ascensionem rectam) ei- Weil nach der Doctrina Sphaerica die Ascensio recta eines jeden Gra- So man aber zu wissen begehret, wie viel Grade des Aequators Man kann auch umgewandt, wann eine Ascensio recta vorgegeben IV. Nutz. Die gerade Aufſteigung (Aſcenſionem rectam) ei- Weil nach der Doctrina Sphærica die Aſcenſio recta eines jeden Gra- So man aber zu wiſſen begehret, wie viel Grade des Aequators Man kann auch umgewandt, wann eine Aſcenſio recta vorgegeben <TEI> <text> <body> <div n="3"> <pb facs="#f0041" n="29"/> </div> <div n="3"> <head>IV. Nutz.</head><lb/> <argument> <p>Die gerade Aufſteigung (Aſcenſionem rectam) ei-<lb/> nes ieden Grades in der Ecliptic, auch eines jeden Sterns, und<lb/> wieder bey der Aſcenſione recta den correſpondirenden<lb/> Grad der Ekliptik zu finden.</p> </argument><lb/><lb/> <p>Weil nach der Doctrina Sphærica die Aſcenſio recta eines jeden Gra-<lb/> des in der Ekliptik, auch eines jeden Puncts oder Sterns auſſer<lb/> derſelben derjenige Grad in dem Aequatore iſt, der mit jenem in der<lb/> Sphära recta zugleich über vem Horizont aufſteiget, und man einen jeden<lb/> Stundenzirkel für einen dergleichen Horizont in bemeldter Sphära geiten<lb/> laſſen kann, mag dieſe nach ſolchen Zirkeln auf dem Aſtrolabio gar leicht<lb/> determiniret werden, indeme man auf dem Aequatore den Grad, welchen<lb/> zugleich der durch den vorgegebenen Punct laufende Stundenzirkel<lb/> durchſchneidet, der wie vielſte er von dem Coluro Aequinoctiorum an, bey<lb/> dem Anfang des Widders von Abend gegen Morgen ſeye, zehlet, als<lb/> z. E. ſo man die Aſcenſionem rectam des zweyten Grads, im Stier zu<lb/> wiſſen verlanget, findet man nach dem Stundenzirkel, der durch dieſen<lb/> zweyten Grad gehet, daß ſelbiger auf dem Aequator den 30ten Grad<lb/> durchſchneide, und demnach ungefehr 30. Grad vor die Aſcenſionem re-<lb/> ctam angebe. </p> <p>So man aber zu wiſſen begehret, wie viel Grade des Aequators<lb/> mit einem ganzen Zeichen aufſteigen, muß man ſo wol zu Anfang als<lb/> am Ende des Zeichens die Aſcenſionem rectam nach dem obigen ſuchen,<lb/> ſo wird die Differenz zwiſchen beyden das verlangte richtig darſtellen, al-<lb/> ſo findet man z. E. daß das ganze Zeichen des Widders faſt mit 28. Graden<lb/> des Aequators correſpondire. </p> <p>Man kann auch umgewandt, wann eine Aſcenſio recta vorgegeben<lb/> worden, nach eben dergleichen Stundenzirkeln den correſpondirenden<lb/> Grad der Ekliptik, ſo man das obige wohl begriffen,<lb/> gar leicht finden. </p> <figure/><lb/> </div> </body> </text> </TEI> [29/0041]
IV. Nutz.
Die gerade Aufſteigung (Aſcenſionem rectam) ei-
nes ieden Grades in der Ecliptic, auch eines jeden Sterns, und
wieder bey der Aſcenſione recta den correſpondirenden
Grad der Ekliptik zu finden.
Weil nach der Doctrina Sphærica die Aſcenſio recta eines jeden Gra-
des in der Ekliptik, auch eines jeden Puncts oder Sterns auſſer
derſelben derjenige Grad in dem Aequatore iſt, der mit jenem in der
Sphära recta zugleich über vem Horizont aufſteiget, und man einen jeden
Stundenzirkel für einen dergleichen Horizont in bemeldter Sphära geiten
laſſen kann, mag dieſe nach ſolchen Zirkeln auf dem Aſtrolabio gar leicht
determiniret werden, indeme man auf dem Aequatore den Grad, welchen
zugleich der durch den vorgegebenen Punct laufende Stundenzirkel
durchſchneidet, der wie vielſte er von dem Coluro Aequinoctiorum an, bey
dem Anfang des Widders von Abend gegen Morgen ſeye, zehlet, als
z. E. ſo man die Aſcenſionem rectam des zweyten Grads, im Stier zu
wiſſen verlanget, findet man nach dem Stundenzirkel, der durch dieſen
zweyten Grad gehet, daß ſelbiger auf dem Aequator den 30ten Grad
durchſchneide, und demnach ungefehr 30. Grad vor die Aſcenſionem re-
ctam angebe.
So man aber zu wiſſen begehret, wie viel Grade des Aequators
mit einem ganzen Zeichen aufſteigen, muß man ſo wol zu Anfang als
am Ende des Zeichens die Aſcenſionem rectam nach dem obigen ſuchen,
ſo wird die Differenz zwiſchen beyden das verlangte richtig darſtellen, al-
ſo findet man z. E. daß das ganze Zeichen des Widders faſt mit 28. Graden
des Aequators correſpondire.
Man kann auch umgewandt, wann eine Aſcenſio recta vorgegeben
worden, nach eben dergleichen Stundenzirkeln den correſpondirenden
Grad der Ekliptik, ſo man das obige wohl begriffen,
gar leicht finden.
[Abbildung]
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … ECHO: Bereitstellung der Texttranskription.
(2013-10-09T11:08:35Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Frederike Neuber: Bearbeitung der digitalen Edition.
(2013-10-09T11:08:35Z)
ECHO: Bereitstellung der Bilddigitalisate
(2013-10-09T11:08:35Z)
Weitere Informationen:Anmerkungen zur Transkription:
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |