Schwenter, Daniel: Deliciae physico-mathematicae oder mathematische und philosophische Erquickstunden. Nürnberg, 1636.Erster Theil der Erquickstunden.
Die producta alle lasse zu hauff summirn/ vnd dir das aggregat sagen/ das
Also zu verstehen/ daß du das bleibende mit dem ersten theiler/ vnd das in Die XXXII. Auffgab. Zu rechnen wie offt 12 Personen so über einem Tisch sitzen/ jhre Stelle verendern können/ daß sie nit einmal sitzen wie das andermal. Weiln Simon Jacob in vorhergehender Auffgab/ gedenckt/ wie sehr Rechen-
Erſter Theil der Erquickſtunden.
Die producta alle laſſe zu hauff ſum̃irn/ vnd dir das aggregat ſagẽ/ das
Alſo zu verſtehen/ daß du das bleibende mit dem erſten theiler/ vnd das in Die XXXII. Auffgab. Zu rechnen wie offt 12 Perſonen ſo uͤber einem Tiſch ſitzen/ jhre Stelle verendern koͤnnen/ daß ſie nit einmal ſitzen wie das andermal. Weiln Simon Jacob in vorhergehender Auffgab/ gedenckt/ wie ſehr Rechen-
<TEI> <text> <body> <div n="1"> <pb facs="#f0080" n="66"/> <fw place="top" type="header"> <hi rendition="#b">Erſter Theil der Erquickſtunden.</hi> </fw><lb/> <table> <row> <cell>Es ſoll<lb/> multipli-<lb/> cirn</cell> <cell rendition="#leftBraced #rightBraced">A.<lb/> B.<lb/> C.<lb/> D.<lb/> E.<lb/> F.<lb/> G.<lb/> H.<lb/> J.<lb/> K.</cell> <cell>mit</cell> <cell rendition="#leftBraced">nichts.<lb/> 182703168<lb/> 199466496<lb/> 201004560<lb/> 201145680<lb/> 201158628<lb/> 201159816<lb/> 201159925<lb/> 201159935<lb/> 201159936</cell> </row> </table><lb/> <p>Die <hi rendition="#aq">producta</hi> alle laſſe zu hauff ſum̃irn/ vnd dir das <hi rendition="#aq">aggregat</hi> ſagẽ/ das<lb/> zeuch ab/ von 11063796480/ dz uͤbrig theil/ wie folgende figur außweiſt/</p><lb/> <table> <row> <cell>Das uͤbrige<lb/> theil mit</cell> <cell rendition="#leftBraced #rightBraced">201159936<lb/> 18456768<lb/> 1693440<lb/> 155376<lb/> 14256<lb/> 1308<lb/> 120<lb/> 11<lb/> 1<lb/> 0</cell> <cell>ſo zeiget der<lb/> quotient wz<lb/> der</cell> <cell rendition="#leftBraced #rightBraced">A<lb/> B<lb/> C<lb/> D<lb/> E<lb/> F<lb/> G<lb/> H<lb/> J<lb/> K</cell> <cell>hat.</cell> </row><lb/> </table> <p>Alſo zu verſtehen/ daß du das bleibende mit dem erſten theiler/ vnd das in<lb/> dieſer theilung bleibet/ mit dem andern/ was bleibet mit dem dritten/ ꝛc. thei-<lb/> leſt/ vnd ſeynt diß die kleinſten Zahlen/ ſo hiezu moͤgen gefunden werden.</p> </div><lb/> <div n="1"> <head> <hi rendition="#b">Die <hi rendition="#aq"><hi rendition="#g">XXXII.</hi></hi> Auffgab.<lb/> Zu rechnen wie offt 12 Perſonen ſo uͤber einem Tiſch ſitzen/ jhre Stelle<lb/> verendern koͤnnen/ daß ſie nit einmal ſitzen wie das andermal.</hi> </head><lb/> <p>Weiln Simon Jacob in vorhergehender Auffgab/ gedenckt/ wie ſehr<lb/> offt 1000 Perſonen jhre ſtelle verendern moͤchten/ will ich hie nur ein Exem-<lb/> pel von 12 Perſonen nemen/ damit das wunder deſto groͤſſer werde: vnd mit<lb/> ſolcher Auffgab haben ſich bemuͤhet/ <hi rendition="#aq">Hieronymus, Cardanus, Joan Bu-<lb/> teo, Nicolaus Tartalius</hi> vnd andere vorneme gelehrte <hi rendition="#aq">Mathematici</hi> vnd<lb/> <fw place="bottom" type="catch">Rechen-</fw><lb/></p> </div> </body> </text> </TEI> [66/0080]
Erſter Theil der Erquickſtunden.
Es ſoll
multipli-
cirn A.
B.
C.
D.
E.
F.
G.
H.
J.
K. mit nichts.
182703168
199466496
201004560
201145680
201158628
201159816
201159925
201159935
201159936
Die producta alle laſſe zu hauff ſum̃irn/ vnd dir das aggregat ſagẽ/ das
zeuch ab/ von 11063796480/ dz uͤbrig theil/ wie folgende figur außweiſt/
Das uͤbrige
theil mit 201159936
18456768
1693440
155376
14256
1308
120
11
1
0 ſo zeiget der
quotient wz
der A
B
C
D
E
F
G
H
J
K hat.
Alſo zu verſtehen/ daß du das bleibende mit dem erſten theiler/ vnd das in
dieſer theilung bleibet/ mit dem andern/ was bleibet mit dem dritten/ ꝛc. thei-
leſt/ vnd ſeynt diß die kleinſten Zahlen/ ſo hiezu moͤgen gefunden werden.
Die XXXII. Auffgab.
Zu rechnen wie offt 12 Perſonen ſo uͤber einem Tiſch ſitzen/ jhre Stelle
verendern koͤnnen/ daß ſie nit einmal ſitzen wie das andermal.
Weiln Simon Jacob in vorhergehender Auffgab/ gedenckt/ wie ſehr
offt 1000 Perſonen jhre ſtelle verendern moͤchten/ will ich hie nur ein Exem-
pel von 12 Perſonen nemen/ damit das wunder deſto groͤſſer werde: vnd mit
ſolcher Auffgab haben ſich bemuͤhet/ Hieronymus, Cardanus, Joan Bu-
teo, Nicolaus Tartalius vnd andere vorneme gelehrte Mathematici vnd
Rechen-
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2025 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |