Klein, Felix: Über Riemann's Theorie der Algebraischen Functionen und ihrer Integrale. Leipzig, 1882.betrachten, sich nicht in's Unendliche erstrecke. Es hat allerdings keinerlei principielle Schwierigkeit, den Punct ebenso in Betracht zu ziehen, wie irgend einen anderen Punct . An Stelle der Reihenentwickelung nach Potenzen von hat dann in bekannter Weise eine solche nach Potenzen von zu treten. Man wird von einem -fachen Kreuzungspuncte bei sprechen, wenn diese Entwickelung hinter dem constanten Gliede sofort einen Term mit bringt. Aber es scheint überflüssig, die geometrischen Verhältnisse, welche diesen Vorkommnissen bei unserer Strömung entsprechen, ausführlicher zu schildern. Denn wir werden später Mittel und Wege kennen lernen, um die Sonderstellung des Werthes , wie sie uns hier entgegentritt, ein für allemal zu beseitigen. Ebendesshalb wird der Punct in den nächstfolgenden Paragraphen (§. 2-4) bei Seite gelassen, trotzdem er auch dort, wenn man vollständig sein wollte, besonders in Betracht gezogen werden müsste. §. 2. Berücksichtigung der Unendlichkeitspuncte von w = f(z). Wir wollen nunmehr auch solche Puncte in unser Gebiet hereinnehmen, in denen unendlich gross wird. Dabei schränken wir indess die unbegränzte Reihe der Möglichkeiten, welche in dieser Richtung vorliegt, mit Rücksicht auf die specielle von uns allein zu studierende Functionsclasse bedeutend ein. Wir wollen verlangen, dass der Differentialquotient keine wesentlich singuläre Stelle besitzen soll, oder, was dasselbe ist, wir wollen festsetzen, dass w nur so unendlich werden darf, wie ein Ausdruck der folgenden Form:
Entsprechend den verschiedenen Formen, die dieser Ausdruck darbietet, sagen wir, dass sich bei verschiedene Unstetigkeiten überlagern: ein logarithmischer Unendlichkeitspunct, ein algebraischer Unendlichkeitspunct von der Multiplicität Eins, u. s. f. Wir werden der Einfachheit halber hier betrachten, sich nicht in's Unendliche erstrecke. Es hat allerdings keinerlei principielle Schwierigkeit, den Punct ebenso in Betracht zu ziehen, wie irgend einen anderen Punct . An Stelle der Reihenentwickelung nach Potenzen von hat dann in bekannter Weise eine solche nach Potenzen von zu treten. Man wird von einem -fachen Kreuzungspuncte bei sprechen, wenn diese Entwickelung hinter dem constanten Gliede sofort einen Term mit bringt. Aber es scheint überflüssig, die geometrischen Verhältnisse, welche diesen Vorkommnissen bei unserer Strömung entsprechen, ausführlicher zu schildern. Denn wir werden später Mittel und Wege kennen lernen, um die Sonderstellung des Werthes , wie sie uns hier entgegentritt, ein für allemal zu beseitigen. Ebendesshalb wird der Punct in den nächstfolgenden Paragraphen (§. 2-4) bei Seite gelassen, trotzdem er auch dort, wenn man vollständig sein wollte, besonders in Betracht gezogen werden müsste. §. 2. Berücksichtigung der Unendlichkeitspuncte von w = f(z). Wir wollen nunmehr auch solche Puncte in unser Gebiet hereinnehmen, in denen unendlich gross wird. Dabei schränken wir indess die unbegränzte Reihe der Möglichkeiten, welche in dieser Richtung vorliegt, mit Rücksicht auf die specielle von uns allein zu studierende Functionsclasse bedeutend ein. Wir wollen verlangen, dass der Differentialquotient keine wesentlich singuläre Stelle besitzen soll, oder, was dasselbe ist, wir wollen festsetzen, dass w nur so unendlich werden darf, wie ein Ausdruck der folgenden Form:
Entsprechend den verschiedenen Formen, die dieser Ausdruck darbietet, sagen wir, dass sich bei verschiedene Unstetigkeiten überlagern: ein logarithmischer Unendlichkeitspunct, ein algebraischer Unendlichkeitspunct von der Multiplicität Eins, u. s. f. Wir werden der Einfachheit halber hier <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0013" n="5"/> betrachten, sich nicht in's Unendliche erstrecke. Es hat allerdings keinerlei principielle Schwierigkeit, den Punct <formula notation="TeX">z = \infty</formula> ebenso in Betracht zu ziehen, wie irgend einen anderen Punct <formula notation="TeX">z = z_{0}</formula>. An Stelle der Reihenentwickelung nach Potenzen von <formula notation="TeX">z - z_{0}</formula> hat dann in bekannter Weise eine solche nach Potenzen von <formula notation="TeX">\dfrac1z</formula> zu treten. Man wird von einem <formula notation="TeX">\alpha</formula>-fachen Kreuzungspuncte bei <formula notation="TeX">z = \infty</formula> sprechen, wenn diese Entwickelung hinter dem constanten Gliede sofort einen Term mit <formula notation="TeX">\left(\dfrac1z\right)^{\alpha + 1}</formula> bringt. Aber es scheint überflüssig, die geometrischen Verhältnisse, welche diesen Vorkommnissen bei unserer Strömung entsprechen, ausführlicher zu schildern. Denn wir werden später Mittel und Wege kennen lernen, um die Sonderstellung des Werthes <formula notation="TeX">z = \infty</formula>, wie sie uns hier entgegentritt, ein für allemal zu beseitigen. Ebendesshalb wird der Punct <formula notation="TeX">z = \infty</formula> in den nächstfolgenden Paragraphen (§. 2-4) bei Seite gelassen, trotzdem er auch dort, wenn man vollständig sein wollte, besonders in Betracht gezogen werden müsste.</p> </div> <div> <head>§. 2. Berücksichtigung der Unendlichkeitspuncte von w = f(z).</head><lb/> <p>Wir wollen nunmehr auch solche Puncte <formula notation="TeX">z_{0}</formula> in unser Gebiet hereinnehmen, in denen <formula notation="TeX">w = f(z)</formula> unendlich gross wird. Dabei schränken wir indess die unbegränzte Reihe der Möglichkeiten, welche in dieser Richtung vorliegt, mit Rücksicht auf die specielle von uns allein zu studierende Functionsclasse bedeutend ein. Wir wollen verlangen, <hi rendition="#i">dass der Differentialquotient <formula notation="TeX">\dfrac{dw}{dz}</formula> keine wesentlich singuläre Stelle besitzen soll</hi>, oder, was dasselbe ist, wir wollen festsetzen, <hi rendition="#i">dass <hi rendition="#i">w</hi> nur so unendlich werden darf, wie ein Ausdruck der folgenden Form</hi>:</p> <p><formula rendition="#c" notation="TeX"> \[ A\log{(z - z_0)} + \frac{A_1} {z - z_0} + \frac{A_2} {(z - z_0)^2} + \dotsb \frac{A_\nu}{(z - z_0)^\nu}, \] </formula><lb/><hi rendition="#i">unter <formula notation="TeX">\nu</formula> eine bestimmte endliche Zahl verstanden</hi>.</p> <p>Entsprechend den verschiedenen Formen, die dieser Ausdruck darbietet, sagen wir, dass sich bei <formula notation="TeX">z = z_0</formula> verschiedene Unstetigkeiten überlagern: ein <hi rendition="#i">logarithmischer</hi> Unendlichkeitspunct, ein <hi rendition="#i">algebraischer</hi> Unendlichkeitspunct von der Multiplicität Eins, u. s. f. Wir werden der Einfachheit halber hier </p> </div> </div> </body> </text> </TEI> [5/0013]
betrachten, sich nicht in's Unendliche erstrecke. Es hat allerdings keinerlei principielle Schwierigkeit, den Punct [FORMEL] ebenso in Betracht zu ziehen, wie irgend einen anderen Punct [FORMEL]. An Stelle der Reihenentwickelung nach Potenzen von [FORMEL] hat dann in bekannter Weise eine solche nach Potenzen von [FORMEL] zu treten. Man wird von einem [FORMEL]-fachen Kreuzungspuncte bei [FORMEL] sprechen, wenn diese Entwickelung hinter dem constanten Gliede sofort einen Term mit [FORMEL] bringt. Aber es scheint überflüssig, die geometrischen Verhältnisse, welche diesen Vorkommnissen bei unserer Strömung entsprechen, ausführlicher zu schildern. Denn wir werden später Mittel und Wege kennen lernen, um die Sonderstellung des Werthes [FORMEL], wie sie uns hier entgegentritt, ein für allemal zu beseitigen. Ebendesshalb wird der Punct [FORMEL] in den nächstfolgenden Paragraphen (§. 2-4) bei Seite gelassen, trotzdem er auch dort, wenn man vollständig sein wollte, besonders in Betracht gezogen werden müsste.
§. 2. Berücksichtigung der Unendlichkeitspuncte von w = f(z).
Wir wollen nunmehr auch solche Puncte [FORMEL] in unser Gebiet hereinnehmen, in denen [FORMEL] unendlich gross wird. Dabei schränken wir indess die unbegränzte Reihe der Möglichkeiten, welche in dieser Richtung vorliegt, mit Rücksicht auf die specielle von uns allein zu studierende Functionsclasse bedeutend ein. Wir wollen verlangen, dass der Differentialquotient [FORMEL] keine wesentlich singuläre Stelle besitzen soll, oder, was dasselbe ist, wir wollen festsetzen, dass w nur so unendlich werden darf, wie ein Ausdruck der folgenden Form:
[FORMEL]
unter [FORMEL] eine bestimmte endliche Zahl verstanden.
Entsprechend den verschiedenen Formen, die dieser Ausdruck darbietet, sagen wir, dass sich bei [FORMEL] verschiedene Unstetigkeiten überlagern: ein logarithmischer Unendlichkeitspunct, ein algebraischer Unendlichkeitspunct von der Multiplicität Eins, u. s. f. Wir werden der Einfachheit halber hier
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … gutenberg.org: Bereitstellung der Texttranskription und Auszeichnung in HTML.
(2012-11-06T13:54:31Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme aus gutenberg.org entsprechen muss.
gutenberg.org: Bereitstellung der Bilddigitalisate
(2012-11-06T13:54:31Z)
Frank Wiegand: Konvertierung von HTML nach XML/TEI gemäß DTA-Basisformat.
(2012-11-06T13:54:31Z)
Weitere Informationen:Anmerkungen zur Transkription:
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |