stellte Gleichung ein, so ist
[Formel 1]
wo a nach §. 134 in Zollen zu setzen ist. Nebstbei erhalten wir noch eine zweite Gleichung für die in einer Sekunde abfliessende Wassermenge M = f . v. Diese zwei Ausdrücke finden für die gleichförmige Bewegung des Wassers in einem Mühlenkanale oder regulären Flussbette Statt und es lassen sich nunmehr mittelst derselben eine Menge hierher gehöriger Aufgaben auflösen.
§. 211.
Bevor wir diese Formel für praktische Fälle anwenden, wollen wir dieselbe noch mit einer vom Herrn Eytelwein angestellten genauen Beobachtung vergleichen. Derselbe führt nämlich in seinem Handbuche der Mechanik fester Körper und der Hydraulik, 2te Auflage, Leipzig 1823 Seite 164 an, dass er in dem mit starken Bretern rechtwinkelig ausgesetzten Mühlkanale bei Bromberg, dessen wir bereits §. 113 erwähnten, die Wasser- menge in einer Sekunde M = 2,327 Rheinl. Kubikfuss gefunden habe, hierbei nahm die Oberfläche des Wassers bei ungehindertem Laufe und einer mittlern Tiefe von 5,5 Zoll = a, ein Gefälle von 2/3 Zoll = y auf die Länge von 100 Fuss = l an. Da überdiess die Breite des Gerinnes b = 4 Fuss betrug, so lässt sich die Geschwindigkeit v des Wassers und hiernach die Wassermenge in einer Sekunde berechnen. Weil 1 Rheinl. Fuss = 0,993 N. Oe. Fuss ist, so können diese Werthe ohne weitere Redukzion in die obigen Formeln substituirt werden, und wir erhalten
[Formel 2]
, demnach
[Formel 3]
oder 2,312 = v2 + 0,132 v, woraus v = 1,456 und dem- nach M =
[Formel 4]
· 4 · 1,456 = 2,669 Kubikfuss folgt. Der geringe Unterschied, welcher zwi- schen der beobachteten Wassermenge von 2,327 Kub. Fuss und dieser berechneten Was- sermenge Statt findet, zeigt offenbar, dass unsere Formel für die oben angegebenen Fälle der gleichförmigen Bewegung des Wassers in Mühlkanälen und regulären Flussbetten hinlänglich genaue Resultate liefere.
§. 212.
Die Tiefe a bei grösseren Flüssen oder Kanälen beträgt in Zollen ausgedrückt gewöhn- lich so viel, dass dadurch der zweite Theil des Widerstandes oder
[Formel 5]
in den mei- sten Fällen gegen den ersten Theil
[Formel 6]
ohne Bedenken vernachlässigt werden kann. Wir erhalten hiernach für die gleichförmige Bewegung des Wassers in Kanälen oder regu- lären Flussbetten die abgekürzte Gleichung
[Formel 7]
(I), und M = a . b . v (II). In diesen zwei Gleichungen kommen 6 Grössen, nämlich y, l, a, b, v und M vor; man kann daher 2 Grössen bestimmen, wenn die 4 übrigen bekannt sind.
Bevor wir jedoch zu einigen Beispielen hierüber übergehen, wollen wir noch den Fall betrachten, wenn das Wasser in einem Kanale oder Flusse durch ausserordent- liche Zuflüsse bedeutend steigt. Hier tritt sodann eine Vermehrung der mittlern Geschwindigkeit ein.
Widerstände des Wassers in Mühlkanälen.
stellte Gleichung ein, so ist
[Formel 1]
wo a nach §. 134 in Zollen zu setzen ist. Nebstbei erhalten wir noch eine zweite Gleichung für die in einer Sekunde abfliessende Wassermenge M = f . v. Diese zwei Ausdrücke finden für die gleichförmige Bewegung des Wassers in einem Mühlenkanale oder regulären Flussbette Statt und es lassen sich nunmehr mittelst derselben eine Menge hierher gehöriger Aufgaben auflösen.
§. 211.
Bevor wir diese Formel für praktische Fälle anwenden, wollen wir dieselbe noch mit einer vom Herrn Eytelwein angestellten genauen Beobachtung vergleichen. Derselbe führt nämlich in seinem Handbuche der Mechanik fester Körper und der Hydraulik, 2te Auflage, Leipzig 1823 Seite 164 an, dass er in dem mit starken Bretern rechtwinkelig ausgesetzten Mühlkanale bei Bromberg, dessen wir bereits §. 113 erwähnten, die Wasser- menge in einer Sekunde M = 2,327 Rheinl. Kubikfuss gefunden habe, hierbei nahm die Oberfläche des Wassers bei ungehindertem Laufe und einer mittlern Tiefe von 5,5 Zoll = a, ein Gefälle von ⅔ Zoll = y auf die Länge von 100 Fuss = l an. Da überdiess die Breite des Gerinnes b = 4 Fuss betrug, so lässt sich die Geschwindigkeit v des Wassers und hiernach die Wassermenge in einer Sekunde berechnen. Weil 1 Rheinl. Fuss = 0,993 N. Oe. Fuss ist, so können diese Werthe ohne weitere Redukzion in die obigen Formeln substituirt werden, und wir erhalten
[Formel 2]
, demnach
[Formel 3]
oder 2,312 = v2 + 0,132 v, woraus v = 1,456 und dem- nach M =
[Formel 4]
· 4 · 1,456 = 2,669 Kubikfuss folgt. Der geringe Unterschied, welcher zwi- schen der beobachteten Wassermenge von 2,327 Kub. Fuss und dieser berechneten Was- sermenge Statt findet, zeigt offenbar, dass unsere Formel für die oben angegebenen Fälle der gleichförmigen Bewegung des Wassers in Mühlkanälen und regulären Flussbetten hinlänglich genaue Resultate liefere.
§. 212.
Die Tiefe a bei grösseren Flüssen oder Kanälen beträgt in Zollen ausgedrückt gewöhn- lich so viel, dass dadurch der zweite Theil des Widerstandes oder
[Formel 5]
in den mei- sten Fällen gegen den ersten Theil
[Formel 6]
ohne Bedenken vernachlässigt werden kann. Wir erhalten hiernach für die gleichförmige Bewegung des Wassers in Kanälen oder regu- lären Flussbetten die abgekürzte Gleichung
[Formel 7]
(I), und M = a . b . v (II). In diesen zwei Gleichungen kommen 6 Grössen, nämlich y, l, a, b, v und M vor; man kann daher 2 Grössen bestimmen, wenn die 4 übrigen bekannt sind.
Bevor wir jedoch zu einigen Beispielen hierüber übergehen, wollen wir noch den Fall betrachten, wenn das Wasser in einem Kanale oder Flusse durch ausserordent- liche Zuflüsse bedeutend steigt. Hier tritt sodann eine Vermehrung der mittlern Geschwindigkeit ein.
<TEI><text><body><divn="1"><divn="2"><divn="3"><p><pbfacs="#f0305"n="287"/><fwplace="top"type="header"><hirendition="#i">Widerstände des Wassers in Mühlkanälen.</hi></fw><lb/>
stellte Gleichung ein, so ist <formula/> wo a nach §. 134 in Zollen<lb/>
zu setzen ist. Nebstbei erhalten wir noch eine zweite Gleichung für die in einer Sekunde<lb/>
abfliessende Wassermenge M = f . v. Diese zwei Ausdrücke finden für die gleichförmige<lb/>
Bewegung des Wassers in einem Mühlenkanale oder regulären Flussbette Statt und es<lb/>
lassen sich nunmehr mittelst derselben eine Menge hierher gehöriger Aufgaben auflösen.</p></div><lb/><divn="3"><head>§. 211.</head><lb/><p>Bevor wir diese Formel für praktische Fälle anwenden, wollen wir dieselbe noch<lb/>
mit einer vom Herrn <hirendition="#i">Eytelwein</hi> angestellten genauen Beobachtung vergleichen. Derselbe<lb/>
führt nämlich in seinem Handbuche der Mechanik fester Körper und der Hydraulik, 2<hirendition="#sup">te</hi><lb/>
Auflage, <hirendition="#i">Leipzig</hi> 1823 Seite 164 an, dass er in dem mit starken Bretern rechtwinkelig<lb/>
ausgesetzten Mühlkanale bei <hirendition="#i">Bromberg</hi>, dessen wir bereits §. 113 erwähnten, die Wasser-<lb/>
menge in einer Sekunde M = 2,<hirendition="#sub">327</hi> Rheinl. Kubikfuss gefunden habe, hierbei nahm die<lb/>
Oberfläche des Wassers bei ungehindertem Laufe und einer mittlern Tiefe von 5,<hirendition="#sub">5</hi> Zoll = a,<lb/>
ein Gefälle von ⅔ Zoll = y auf die Länge von 100 Fuss = l an. Da überdiess die<lb/>
Breite des Gerinnes b = 4 Fuss betrug, so lässt sich die Geschwindigkeit v des Wassers<lb/>
und hiernach die Wassermenge in einer Sekunde berechnen. Weil 1 Rheinl. Fuss<lb/>
= 0,<hirendition="#sub">993</hi> N. Oe. Fuss ist, so können diese Werthe ohne weitere Redukzion in die obigen<lb/>
Formeln substituirt werden, und wir erhalten <formula/>, demnach<lb/><formula/> oder 2,<hirendition="#sub">312</hi> = v<hirendition="#sup">2</hi> + 0,<hirendition="#sub">132</hi> v, woraus v = 1,<hirendition="#sub">456</hi> und dem-<lb/>
nach M = <formula/> · 4 · 1,<hirendition="#sub">456</hi> = 2,<hirendition="#sub">669</hi> Kubikfuss folgt. Der geringe Unterschied, welcher zwi-<lb/>
schen der beobachteten Wassermenge von 2,<hirendition="#sub">327</hi> Kub. Fuss und dieser berechneten Was-<lb/>
sermenge Statt findet, zeigt offenbar, dass unsere Formel für die oben angegebenen Fälle<lb/>
der gleichförmigen Bewegung des Wassers in Mühlkanälen und regulären Flussbetten<lb/>
hinlänglich genaue Resultate liefere.</p></div><lb/><divn="3"><head>§. 212.</head><lb/><p>Die Tiefe a bei grösseren Flüssen oder Kanälen beträgt in Zollen ausgedrückt gewöhn-<lb/>
lich so viel, dass dadurch der zweite Theil des Widerstandes oder <formula/> in den mei-<lb/>
sten Fällen gegen den ersten Theil <formula/> ohne Bedenken vernachlässigt werden kann.<lb/>
Wir erhalten hiernach für die gleichförmige Bewegung des Wassers in Kanälen oder regu-<lb/>
lären Flussbetten die abgekürzte Gleichung <formula/> (I), und<lb/>
M = a . b . v (II). In diesen zwei Gleichungen kommen 6 Grössen, nämlich y, l, a, b,<lb/>
v und M vor; man kann daher 2 Grössen bestimmen, wenn die 4 übrigen bekannt sind.</p><lb/><p>Bevor wir jedoch zu einigen Beispielen hierüber übergehen, wollen wir noch den<lb/>
Fall betrachten, wenn das Wasser in einem Kanale oder Flusse durch ausserordent-<lb/>
liche Zuflüsse bedeutend steigt. Hier tritt sodann eine <hirendition="#g">Vermehrung der mittlern<lb/>
Geschwindigkeit ein</hi>.</p><lb/></div></div></div></body></text></TEI>
[287/0305]
Widerstände des Wassers in Mühlkanälen.
stellte Gleichung ein, so ist [FORMEL] wo a nach §. 134 in Zollen
zu setzen ist. Nebstbei erhalten wir noch eine zweite Gleichung für die in einer Sekunde
abfliessende Wassermenge M = f . v. Diese zwei Ausdrücke finden für die gleichförmige
Bewegung des Wassers in einem Mühlenkanale oder regulären Flussbette Statt und es
lassen sich nunmehr mittelst derselben eine Menge hierher gehöriger Aufgaben auflösen.
§. 211.
Bevor wir diese Formel für praktische Fälle anwenden, wollen wir dieselbe noch
mit einer vom Herrn Eytelwein angestellten genauen Beobachtung vergleichen. Derselbe
führt nämlich in seinem Handbuche der Mechanik fester Körper und der Hydraulik, 2te
Auflage, Leipzig 1823 Seite 164 an, dass er in dem mit starken Bretern rechtwinkelig
ausgesetzten Mühlkanale bei Bromberg, dessen wir bereits §. 113 erwähnten, die Wasser-
menge in einer Sekunde M = 2,327 Rheinl. Kubikfuss gefunden habe, hierbei nahm die
Oberfläche des Wassers bei ungehindertem Laufe und einer mittlern Tiefe von 5,5 Zoll = a,
ein Gefälle von ⅔ Zoll = y auf die Länge von 100 Fuss = l an. Da überdiess die
Breite des Gerinnes b = 4 Fuss betrug, so lässt sich die Geschwindigkeit v des Wassers
und hiernach die Wassermenge in einer Sekunde berechnen. Weil 1 Rheinl. Fuss
= 0,993 N. Oe. Fuss ist, so können diese Werthe ohne weitere Redukzion in die obigen
Formeln substituirt werden, und wir erhalten [FORMEL], demnach
[FORMEL] oder 2,312 = v2 + 0,132 v, woraus v = 1,456 und dem-
nach M = [FORMEL] · 4 · 1,456 = 2,669 Kubikfuss folgt. Der geringe Unterschied, welcher zwi-
schen der beobachteten Wassermenge von 2,327 Kub. Fuss und dieser berechneten Was-
sermenge Statt findet, zeigt offenbar, dass unsere Formel für die oben angegebenen Fälle
der gleichförmigen Bewegung des Wassers in Mühlkanälen und regulären Flussbetten
hinlänglich genaue Resultate liefere.
§. 212.
Die Tiefe a bei grösseren Flüssen oder Kanälen beträgt in Zollen ausgedrückt gewöhn-
lich so viel, dass dadurch der zweite Theil des Widerstandes oder [FORMEL] in den mei-
sten Fällen gegen den ersten Theil [FORMEL] ohne Bedenken vernachlässigt werden kann.
Wir erhalten hiernach für die gleichförmige Bewegung des Wassers in Kanälen oder regu-
lären Flussbetten die abgekürzte Gleichung [FORMEL] (I), und
M = a . b . v (II). In diesen zwei Gleichungen kommen 6 Grössen, nämlich y, l, a, b,
v und M vor; man kann daher 2 Grössen bestimmen, wenn die 4 übrigen bekannt sind.
Bevor wir jedoch zu einigen Beispielen hierüber übergehen, wollen wir noch den
Fall betrachten, wenn das Wasser in einem Kanale oder Flusse durch ausserordent-
liche Zuflüsse bedeutend steigt. Hier tritt sodann eine Vermehrung der mittlern
Geschwindigkeit ein.
Informationen zur CAB-Ansicht
Diese Ansicht bietet Ihnen die Darstellung des Textes in normalisierter Orthographie.
Diese Textvariante wird vollautomatisch erstellt und kann aufgrund dessen auch Fehler enthalten.
Alle veränderten Wortformen sind grau hinterlegt. Als fremdsprachliches Material erkannte
Textteile sind ausgegraut dargestellt.
Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 2: Mechanik flüssiger Körper. Prag, 1832, S. 287. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/gerstner_mechanik02_1832/305>, abgerufen am 18.12.2024.
Alle Inhalte dieser Seite unterstehen, soweit nicht anders gekennzeichnet, einer
Creative-Commons-Lizenz.
Die Rechte an den angezeigten Bilddigitalisaten, soweit nicht anders gekennzeichnet, liegen bei den besitzenden Bibliotheken.
Weitere Informationen finden Sie in den DTA-Nutzungsbedingungen.
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf
diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken
dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder
nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der
Herabwürdigung der Menschenwürde gezeigt werden.
Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des
§ 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen
Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung
der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu
vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
Zitierempfehlung: Deutsches Textarchiv. Grundlage für ein Referenzkorpus der neuhochdeutschen Sprache. Herausgegeben von der Berlin-Brandenburgischen Akademie der Wissenschaften, Berlin 2024. URL: https://www.deutschestextarchiv.de/.