Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.der Algebra.
so werdet ihr wahrnehmen/ daß eine jede wenn (4) D
der Algebra.
ſo werdet ihr wahrnehmen/ daß eine jede wenn (4) D
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <div n="4"> <pb facs="#f0051" n="49"/> <fw place="top" type="header"> <hi rendition="#b">der Algebra.</hi> </fw><lb/> <table> <row> <cell>1 <hi rendition="#aq"><hi rendition="#i">a</hi></hi></cell> <cell>1 <hi rendition="#aq"><hi rendition="#i">b</hi></hi></cell> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> </row><lb/> <row> <cell>1 <hi rendition="#aq"><hi rendition="#i">a</hi></hi><hi rendition="#sup">2</hi></cell> <cell>2 <hi rendition="#aq"><hi rendition="#i">ab</hi></hi></cell> <cell>1 <hi rendition="#aq"><hi rendition="#i">b</hi></hi><hi rendition="#sup">2</hi></cell> <cell/> <cell/> <cell/> <cell/> <cell/> <cell/> </row><lb/> <row> <cell>1 <hi rendition="#aq"><hi rendition="#i">a</hi></hi></cell> <cell>3 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">b</hi></hi></cell> <cell>3 <hi rendition="#aq"><hi rendition="#i">a b</hi></hi><hi rendition="#sup">2</hi></cell> <cell>1 <hi rendition="#aq"><hi rendition="#i">b</hi></hi><hi rendition="#sup">3</hi></cell> <cell/> <cell/> <cell/> <cell/> <cell/> </row><lb/> <row> <cell>1 <hi rendition="#aq"><hi rendition="#i">a</hi></hi><hi rendition="#sup">4</hi></cell> <cell>4 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">3</hi><hi rendition="#i">b</hi></hi></cell> <cell>6 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">2</hi></cell> <cell>4 <hi rendition="#aq"><hi rendition="#i">a b</hi></hi><hi rendition="#sup">3</hi></cell> <cell>1 <hi rendition="#aq"><hi rendition="#i">b</hi></hi><hi rendition="#sup">5</hi></cell> <cell/> <cell/> <cell/> <cell/> </row><lb/> <row> <cell>1 <hi rendition="#aq"><hi rendition="#i">a</hi></hi><hi rendition="#sup">5</hi></cell> <cell>5 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">4</hi><hi rendition="#i">b</hi></hi></cell> <cell>10 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">3</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">2</hi></cell> <cell>10 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">3</hi></cell> <cell>5 <hi rendition="#aq"><hi rendition="#i">a b</hi></hi><hi rendition="#sup">4</hi></cell> <cell>1 <hi rendition="#aq"><hi rendition="#i">b</hi></hi><hi rendition="#sup">5</hi></cell> <cell/> <cell/> <cell/> </row><lb/> <row> <cell>1 <hi rendition="#aq"><hi rendition="#i">a</hi></hi><hi rendition="#sup">6</hi></cell> <cell>6 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">5</hi><hi rendition="#i">b</hi></hi></cell> <cell>15 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">4</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">2</hi></cell> <cell>20 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">3</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">3</hi></cell> <cell>15 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">4</hi></cell> <cell>6 <hi rendition="#aq"><hi rendition="#i">a b</hi></hi><hi rendition="#sup">5</hi></cell> <cell>1 <hi rendition="#aq"><hi rendition="#i">b</hi></hi><hi rendition="#sup">6</hi></cell> <cell/> <cell/> </row><lb/> <row> <cell>1 <hi rendition="#aq"><hi rendition="#i">a</hi></hi><hi rendition="#sup">7</hi></cell> <cell>7 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">6</hi><hi rendition="#i">b</hi></hi></cell> <cell>21 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">5</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">2</hi></cell> <cell>35 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">4</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">3</hi></cell> <cell>35 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">3</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">4</hi></cell> <cell>21 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">5</hi></cell> <cell>7 <hi rendition="#aq"><hi rendition="#i">a b</hi></hi><hi rendition="#sup">6</hi></cell> <cell>1 <hi rendition="#aq"><hi rendition="#i">b</hi></hi><hi rendition="#sup">7</hi></cell> <cell/> </row><lb/> <row> <cell>1 <hi rendition="#aq"><hi rendition="#i">a</hi></hi><hi rendition="#sup">8</hi></cell> <cell>8 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">7</hi><hi rendition="#i">b</hi></hi></cell> <cell>28 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">6</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">2</hi></cell> <cell>56 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">3</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">5</hi></cell> <cell>70 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">4</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">4</hi></cell> <cell>56 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">3</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">5</hi></cell> <cell>28 <hi rendition="#aq"><hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">b</hi></hi><hi rendition="#sup">6</hi></cell> <cell>8 <hi rendition="#aq"><hi rendition="#i">a b</hi></hi><hi rendition="#sup">7</hi></cell> <cell>1 <hi rendition="#aq"><hi rendition="#i">b</hi></hi><hi rendition="#sup">8</hi></cell> </row> </table><lb/> <p>ſo werdet ihr wahrnehmen/ daß eine jede<lb/> Dignitaͤt aus verſchiedenen Producten zu-<lb/> ſammen geſetzet iſt/ und dieſe Producte durch<lb/> verſchiedene Zahlen in einander multipliciret<lb/> werden. Es entſtehen aber dieſe Producte<lb/> <fw place="bottom" type="sig">(4) D</fw><fw place="bottom" type="catch">wenn</fw><lb/></p> </div> </div> </div> </div> </body> </text> </TEI> [49/0051]
der Algebra.
1 a 1 b
1 a2 2 ab 1 b2
1 a 3 a2 b 3 a b2 1 b3
1 a4 4 a3 b 6 a2 b2 4 a b3 1 b5
1 a5 5 a4 b 10 a3 b2 10 a2 b3 5 a b4 1 b5
1 a6 6 a5 b 15 a4 b2 20 a3 b3 15 a2 b4 6 a b5 1 b6
1 a7 7 a6 b 21 a5 b2 35 a4 b3 35 a3 b4 21 a2 b5 7 a b6 1 b7
1 a8 8 a7 b 28 a6 b2 56 a3 b5 70 a4 b4 56 a3 b5 28 a2 b6 8 a b7 1 b8
ſo werdet ihr wahrnehmen/ daß eine jede
Dignitaͤt aus verſchiedenen Producten zu-
ſammen geſetzet iſt/ und dieſe Producte durch
verſchiedene Zahlen in einander multipliciret
werden. Es entſtehen aber dieſe Producte
wenn
(4) D
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/51 |
Zitationshilfe: | Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710. , S. 49. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/51>, abgerufen am 16.02.2025. |