Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.Anfangs-Gründe Setzet in der neuen AEquation jedes gefun-denes Glied = 0/ so ist ah-1=0 ai + bh2 = 0 ak+2bhi+ch3 = 0 h = 1 : a i = -bh2 : a k=(-2bhi-ch3):a i = -b : a3 k=(+2b2-ac):a5 al + bi2+2bhk+3ch2i + dh4 = 0 l = (bi2-2bhk - 3chi - dh4) : a l = -b3 : a7-4b : a7 + 2bc a6 + 3bc:a6-d:a5 l = (5abc-5b3-a2d) : a7 Eben so findet ihr Setzet nun endlich in der angenommenen Die 1. Anmerckung. 490. Auf gleiche Art könnet ihr in allen andern tion
Anfangs-Gruͤnde Setzet in der neuen Æquation jedes gefun-denes Glied = 0/ ſo iſt ah-1=0 ai + bh2 = 0 ak+2bhi+ch3 = 0 h = 1 : a i = -bh2 : a k=(-2bhi-ch3):a i = -b : a3 k=(+2b2-ac):a5 al + bi2+2bhk+3ch2i + dh4 = 0 l = (bi2-2bhk - 3chi - dh4) : a l = -b3 : a7-4b : a7 + 2bc a6 + 3bc:a6-d:a5 l = (5abc-5b3-a2d) : a7 Eben ſo findet ihr Setzet nun endlich in der angenommenen Die 1. Anmerckung. 490. Auf gleiche Art koͤnnet ihr in allen andern tion
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <div n="4"> <div n="5"> <p><pb facs="#f0312" n="310"/><fw place="top" type="header"><hi rendition="#b">Anfangs-Gruͤnde</hi></fw><lb/> Setzet in der neuen <hi rendition="#aq">Æquation</hi> jedes gefun-<lb/> denes Glied = <hi rendition="#i">0/</hi> ſo iſt<lb/><hi rendition="#aq"><hi rendition="#u"><hi rendition="#i">ah</hi>-1=0 <hi rendition="#i">ai + bh</hi><hi rendition="#sup">2</hi> = 0 <hi rendition="#i">ak+2bhi+ch</hi><hi rendition="#sup">3</hi> = 0</hi><lb/><hi rendition="#i">h</hi> = 1 : <hi rendition="#i">a</hi> <hi rendition="#u"><hi rendition="#i">i = -bh</hi><hi rendition="#sup">2</hi> : <hi rendition="#i">a k</hi>=(-2<hi rendition="#i">bhi-ch</hi><hi rendition="#sup">3</hi>):<hi rendition="#i">a</hi></hi></hi><lb/><hi rendition="#et"><hi rendition="#aq"><hi rendition="#i">i = -b : a</hi><hi rendition="#sup">3</hi><hi rendition="#i">k</hi>=(+2<hi rendition="#i">b</hi><hi rendition="#sup">2</hi>-<hi rendition="#i">ac</hi>):<hi rendition="#i">a</hi><hi rendition="#sup">5</hi></hi></hi><lb/><hi rendition="#aq"><hi rendition="#u"><hi rendition="#i">al + bi</hi><hi rendition="#sup">2</hi>+2<hi rendition="#i">bhk</hi>+3<hi rendition="#i">ch</hi><hi rendition="#sup">2</hi><hi rendition="#i">i</hi> + <hi rendition="#i">dh</hi><hi rendition="#sup">4</hi> = 0<lb/><hi rendition="#i">l</hi> = (<hi rendition="#i">bi</hi><hi rendition="#sup">2</hi>-2<hi rendition="#i">bhk</hi> - 3<hi rendition="#i">chi</hi> - <hi rendition="#i">dh</hi><hi rendition="#sup">4</hi>) : <hi rendition="#i">a<lb/> l = -b</hi><hi rendition="#sup">3</hi> : <hi rendition="#i">a</hi><hi rendition="#sup">7</hi>-4<hi rendition="#i">b</hi> : <hi rendition="#i">a</hi><hi rendition="#sup">7</hi> + 2<hi rendition="#i">bc a</hi><hi rendition="#sup">6</hi> + 3<hi rendition="#i">bc:a</hi><hi rendition="#sup">6</hi>-<hi rendition="#i">d:a</hi><hi rendition="#sup">5</hi><lb/><hi rendition="#i">l</hi> = (5<hi rendition="#i">abc</hi>-5<hi rendition="#i">b</hi><hi rendition="#sup">3</hi>-<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">d</hi>) : <hi rendition="#i">a</hi><hi rendition="#sup">7</hi></hi></hi></p><lb/> <p>Eben ſo findet ihr<lb/><hi rendition="#aq"><hi rendition="#i">m</hi>=14<hi rendition="#i">b</hi><hi rendition="#sup">4</hi>+6<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">bd</hi>-21<hi rendition="#i">ab</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi> + 3<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">c</hi><hi rendition="#sup">2</hi>-<hi rendition="#i">a</hi><hi rendition="#sup">3</hi><hi rendition="#i">e</hi>) : <hi rendition="#i">a</hi><hi rendition="#sup">9</hi><lb/><hi rendition="#i">n</hi> = (-42<hi rendition="#i">b</hi>5 + 84<hi rendition="#i">ab</hi><hi rendition="#sup">3</hi><hi rendition="#i">c</hi>-28<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">bc</hi> - 28<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">b</hi><hi rendition="#sup">2</hi><hi rendition="#i">d</hi> + 7<hi rendition="#i">a</hi><hi rendition="#sup">3</hi><lb/><hi rendition="#i">cd</hi>+7<hi rendition="#i">a<gap reason="illegible" unit="chars" quantity="1"/>be-a</hi><hi rendition="#sup">4</hi><hi rendition="#i">f</hi>) : <hi rendition="#i">a</hi><hi rendition="#sup">11</hi></hi> u. ſ. w.</p><lb/> <p>Setzet nun endlich in der angenommenen<lb/><hi rendition="#aq">Æquation <hi rendition="#i">x=hu+iu</hi><hi rendition="#sup">2</hi>+<hi rendition="#i">ku</hi><hi rendition="#sup">3</hi>+<hi rendition="#i">lu</hi><hi rendition="#sup">4</hi>+<hi rendition="#i">mu</hi><hi rendition="#sup">5</hi>+<hi rendition="#i">nu</hi><hi rendition="#sup">6</hi><lb/> &c.</hi> die gefundenen Werthe von <hi rendition="#aq"><hi rendition="#i">h. i. k. l. m.<lb/> n</hi>;</hi> ſo kommet die verlangte Reihe <formula/><lb/> u. ſ. w. her-<lb/> aus.</p> </div><lb/> <div n="5"> <head> <hi rendition="#b">Die 1. Anmerckung.</hi> </head><lb/> <p>490. Auf gleiche Art koͤnnet ihr in allen andern<lb/> Faͤllen verfahren. Doch wenn die Exponenten der<lb/> Dignitaͤten in einer andern Arithmetiſchen Propor-<lb/> <fw place="bottom" type="catch">tion</fw><lb/></p> </div> </div> </div> </div> </div> </body> </text> </TEI> [310/0312]
Anfangs-Gruͤnde
Setzet in der neuen Æquation jedes gefun-
denes Glied = 0/ ſo iſt
ah-1=0 ai + bh2 = 0 ak+2bhi+ch3 = 0
h = 1 : a i = -bh2 : a k=(-2bhi-ch3):a
i = -b : a3 k=(+2b2-ac):a5
al + bi2+2bhk+3ch2i + dh4 = 0
l = (bi2-2bhk - 3chi - dh4) : a
l = -b3 : a7-4b : a7 + 2bc a6 + 3bc:a6-d:a5
l = (5abc-5b3-a2d) : a7
Eben ſo findet ihr
m=14b4+6a2bd-21ab2c + 3a2c2-a3e) : a9
n = (-42b5 + 84ab3c-28a2bc - 28a2b2d + 7a3
cd+7a_be-a4f) : a11 u. ſ. w.
Setzet nun endlich in der angenommenen
Æquation x=hu+iu2+ku3+lu4+mu5+nu6
&c. die gefundenen Werthe von h. i. k. l. m.
n; ſo kommet die verlangte Reihe [FORMEL]
u. ſ. w. her-
aus.
Die 1. Anmerckung.
490. Auf gleiche Art koͤnnet ihr in allen andern
Faͤllen verfahren. Doch wenn die Exponenten der
Dignitaͤten in einer andern Arithmetiſchen Propor-
tion
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/312 |
Zitationshilfe: | Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710. , S. 310. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/312>, abgerufen am 18.02.2025. |