Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.der Algebra. - p = -4c4 1/4 p = c 4c2 - 2ab + a2 = q a2 + 4c2 - q = 2ab 2a 1/2 a + 2c2 : a - q : 2a = b das ist/ 1/2 a + p2 : 8a - q : 2a = b 4c2 - 2ab + a2 = q 4c2 + a2 + q = 2ab 2a 1/2a + 2c2 : a + q : 2a = b das ist/ 1/2a + p2 : 8a + q : 2a = b 4abc - 2a2 d = r 4abc - r = 2a2d 2bc : a - r : 2a2 = d 1/4p + p3 : 16a2 + pq : 4a - r : 2a2 d 4abc - 2a2d = - r 4abc + r = 2a2d 2a2 2bc : a + r : 2a2 = d 1/4p + p3 : 16a2 + pq : 4a + r : 2a2 = d Also kommet abermal in allen Fällen/ da - p ist/
der Algebra. - p = -4c4 ¼ p = c 4c2 - 2ab + a2 = q a2 + 4c2 - q = 2ab 2a ½ a + 2c2 : a - q : 2a = b das iſt/ ½ a + p2 : 8a - q : 2a = b 4c2 - 2ab + a2 = q 4c2 + a2 + q = 2ab 2a ½a + 2c2 : a + q : 2a = b das iſt/ ½a + p2 : 8a + q : 2a = b 4abc - 2a2 d = r 4abc - r = 2a2d 2bc : a - r : 2a2 = d ¼p + p3 : 16a2 + pq : 4a - r : 2a2 ≡ d 4abc - 2a2d = - r 4abc + r = 2a2d 2a2 2bc : a + r : 2a2 = d ¼p + p3 : 16a2 + pq : 4a + r : 2a2 = d Alſo kommet abermal in allen Faͤllen/ da - p iſt/
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <div n="4"> <div n="5"> <p><pb facs="#f0237" n="235"/><fw place="top" type="header"><hi rendition="#b">der Algebra.</hi></fw><lb/><hi rendition="#et"><hi rendition="#aq"><hi rendition="#u">- <hi rendition="#i">p</hi> = -4<hi rendition="#i">c</hi></hi><lb/> 4<lb/> ¼ <hi rendition="#i">p = c</hi><lb/><hi rendition="#u">4<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> - 2<hi rendition="#i">ab + a</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">q<lb/> a</hi><hi rendition="#sup">2</hi> + 4<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> - <hi rendition="#i">q</hi> = 2<hi rendition="#i">ab</hi></hi><lb/> 2<hi rendition="#i">a</hi><lb/><hi rendition="#u">½ <hi rendition="#i">a</hi> + 2<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> : <hi rendition="#i">a - q</hi> : 2<hi rendition="#i">a = b</hi></hi></hi></hi><lb/> das iſt/ ½ <hi rendition="#aq"><hi rendition="#i">a + p</hi><hi rendition="#sup">2</hi> : 8<hi rendition="#i">a - q</hi> : 2<hi rendition="#i">a = b</hi></hi><lb/><hi rendition="#et"><hi rendition="#aq"><hi rendition="#u">4<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> - 2<hi rendition="#i">ab + a</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">q</hi><lb/> 4<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">a</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">q</hi> = 2<hi rendition="#i">ab</hi></hi><lb/> 2<hi rendition="#i">a</hi><lb/><hi rendition="#u">½<hi rendition="#i">a</hi> + 2<hi rendition="#i">c</hi><hi rendition="#sup">2</hi> : <hi rendition="#i">a + q</hi> : 2<hi rendition="#i">a = b</hi></hi></hi></hi><lb/> das iſt/ ½<hi rendition="#aq"><hi rendition="#i">a + p</hi><hi rendition="#sup">2</hi> : 8<hi rendition="#i">a + q</hi> : 2<hi rendition="#i">a = b</hi></hi><lb/><hi rendition="#et"><hi rendition="#aq"><hi rendition="#u">4<hi rendition="#i">abc</hi> - 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> <hi rendition="#i">d = r</hi><lb/> 4<hi rendition="#i">abc - r</hi> = 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">d</hi><lb/> 2<hi rendition="#i">bc : a - r</hi> : 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">d</hi></hi><lb/> ¼<hi rendition="#i">p + p</hi><hi rendition="#sup">3</hi> : 16<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">pq</hi> : 4<hi rendition="#i">a - r</hi> : 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> ≡ <hi rendition="#i">d</hi><lb/><hi rendition="#u">4<hi rendition="#i">abc</hi> - 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">d = - r</hi><lb/> 4<hi rendition="#i">abc + r</hi> = 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><hi rendition="#i">d</hi></hi><lb/> 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi><lb/><hi rendition="#u">2<hi rendition="#i">bc : a + r</hi> : 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">d</hi></hi><lb/> ¼<hi rendition="#i">p + p</hi><hi rendition="#sup">3</hi> : 16<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> + <hi rendition="#i">pq</hi> : 4<hi rendition="#i">a + r</hi> : 2<hi rendition="#i">a</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">d</hi></hi></hi><lb/> Alſo kommet abermal in allen Faͤllen/ da <hi rendition="#aq"><hi rendition="#i">- p</hi></hi><lb/> <fw place="bottom" type="catch">iſt/</fw><lb/></p> </div> </div> </div> </div> </div> </body> </text> </TEI> [235/0237]
der Algebra.
- p = -4c
4
¼ p = c
4c2 - 2ab + a2 = q
a2 + 4c2 - q = 2ab
2a
½ a + 2c2 : a - q : 2a = b
das iſt/ ½ a + p2 : 8a - q : 2a = b
4c2 - 2ab + a2 = q
4c2 + a2 + q = 2ab
2a
½a + 2c2 : a + q : 2a = b
das iſt/ ½a + p2 : 8a + q : 2a = b
4abc - 2a2 d = r
4abc - r = 2a2d
2bc : a - r : 2a2 = d
¼p + p3 : 16a2 + pq : 4a - r : 2a2 ≡ d
4abc - 2a2d = - r
4abc + r = 2a2d
2a2
2bc : a + r : 2a2 = d
¼p + p3 : 16a2 + pq : 4a + r : 2a2 = d
Alſo kommet abermal in allen Faͤllen/ da - p
iſt/
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/237 |
Zitationshilfe: | Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710. , S. 235. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/237>, abgerufen am 16.02.2025. |