Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.

Bild:
<< vorherige Seite
Anfangs-Gruͤnde
ſo iſt x4 - abx2 = aacx
das iſt a2y2 - a2by = a2cx/
a2
y2 - hy = cx
ein Ort an einer Pa-
rabel.
Ziehet ihn von
ay = xx ab/ ſo bleibet uͤbrig
ay + by - y2 = x2 - cx/ ein Ort an
einem Circul.
III. Es ſey x3 - abx = -aac. Setzet aber-
mal xx = ay/ welches ein Ort an einer
Parabel iſt. Wenn ihr nun den Werth
von xx in der gegebenen Æquation ſub-
ſtituir
et/ ſo iſt ayx-abx = -aac oder yx-
bx = -ac/
ein Ort an einer Hyperbel zwi-
ſchen ihren Aſymptoten. Ferner weil
x3 - abx = -aac
x

ſo iſt x4 - abx2 = - aacx
das iſt a2y2 - a2by = -aacx
a2
y2 - by = -cx/
ein Ort an einer
Parabel.
Ziehet ihn von ay = xx ab/ ſo bleibet uͤ-
brig ay + by - y2 = x2 + cx ein Ort an ei-
nem Circul.
Die 1. Anmerckung

364. Jhr koͤnnet noch mehrere Oerter heraus brin-
gen/ wenn ihr es verlanget. Denn ſetzet zu dem Or-

te

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710
URL zu dieser Seite: https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/222
Zitationshilfe: Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710. , S. 220. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/222>, abgerufen am 29.12.2024.