Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.Dreiundzwanzigste Vorlesung. dann sämtlich disjunkt denen der letzteren Sorte oder der s-Reihe,weil in den einander ausschliessenden Gebieten r, und r1, desgleichen auch in denen s1 und s, enthalten -- cf. § 46, 2. Hülfssatz. Hierauf beruht es dass man in Bezug auf sie jedenfalls die Forderungen er- füllen kann, welche 300) in sich schliesst, indem man nämlich die rk s1 zu u, die sl r1 zu u1 schlägt. Die betreffenden Aggreganten können dann einfach samt den auf sie bezüglichen Faktorungleichungen der Forderung 300) aus der ganzen Betrachtung fortgelassen werden und wird nur mehr darnach zu trachten sein: durch geeignete Verteilung auf u und u1 des Bestandes der dann gänzlich innerhalb t fallenden Indi- viduen der übrigen r und s Aggreganten auch den Rest der auf sie bezüglichen in 300) als Faktorungleichungen ausgedrückten Anforde- rungen zu erfüllen. Dass heisst: man hat die Aufsuchung der Klausel nur noch für eine Minderzahl von Symbolen und Propositionen weiter- zuführen. Im ungünstigsten Falle kann diese "Minderzahl" allerdings zu- Wir setzen also voraus dass von vornherein keines der Gebiete rk Das Problem der Klausel gipfelt hienach in der schwierigen Wenn zwei Reihen von nicht verschwindenden Gebieten ge- Dreiundzwanzigste Vorlesung. dann sämtlich disjunkt denen der letzteren Sorte oder der s-Reihe,weil in den einander ausschliessenden Gebieten r, und r1, desgleichen auch in denen s1 und s, enthalten — cf. § 46, 2. Hülfssatz. Hierauf beruht es dass man in Bezug auf sie jedenfalls die Forderungen er- füllen kann, welche 300) in sich schliesst, indem man nämlich die rϰ s1 zu u, die sλ r1 zu u1 schlägt. Die betreffenden Aggreganten können dann einfach samt den auf sie bezüglichen Faktorungleichungen der Forderung 300) aus der ganzen Betrachtung fortgelassen werden und wird nur mehr darnach zu trachten sein: durch geeignete Verteilung auf u und u1 des Bestandes der dann gänzlich innerhalb t fallenden Indi- viduen der übrigen r und s Aggreganten auch den Rest der auf sie bezüglichen in 300) als Faktorungleichungen ausgedrückten Anforde- rungen zu erfüllen. Dass heisst: man hat die Aufsuchung der Klausel nur noch für eine Minderzahl von Symbolen und Propositionen weiter- zuführen. Im ungünstigsten Falle kann diese „Minderzahl“ allerdings zu- Wir setzen also voraus dass von vornherein keines der Gebiete rϰ Das Problem der Klausel gipfelt hienach in der schwierigen Wenn zwei Reihen von nicht verschwindenden Gebieten ge- <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0416" n="392"/><fw place="top" type="header">Dreiundzwanzigste Vorlesung.</fw><lb/> dann sämtlich disjunkt denen der letzteren Sorte oder der <hi rendition="#i">s</hi>-Reihe,<lb/> weil in den einander ausschliessenden Gebieten <hi rendition="#i">r</hi>, und <hi rendition="#i">r</hi><hi rendition="#sub">1</hi>, desgleichen<lb/> auch in denen <hi rendition="#i">s</hi><hi rendition="#sub">1</hi> und <hi rendition="#i">s</hi>, enthalten — cf. § 46, 2. Hülfssatz. Hierauf<lb/> beruht es dass man in Bezug auf sie jedenfalls die Forderungen er-<lb/> füllen kann, welche 30<hi rendition="#sup">0</hi>) in sich schliesst, indem man nämlich die<lb/><hi rendition="#i">r<hi rendition="#sup">ϰ</hi> s</hi><hi rendition="#sub">1</hi> zu <hi rendition="#i">u</hi>, die <hi rendition="#i">s<hi rendition="#sup">λ</hi> r</hi><hi rendition="#sub">1</hi> zu <hi rendition="#i">u</hi><hi rendition="#sub">1</hi> schlägt. Die betreffenden Aggreganten können<lb/> dann einfach samt den auf sie bezüglichen Faktorungleichungen der<lb/> Forderung 30<hi rendition="#sup">0</hi>) aus der ganzen Betrachtung fortgelassen werden und<lb/> wird nur mehr darnach zu trachten sein: durch geeignete Verteilung<lb/> auf <hi rendition="#i">u</hi> und <hi rendition="#i">u</hi><hi rendition="#sub">1</hi> des Bestandes der dann gänzlich <hi rendition="#i">innerhalb t</hi> fallenden Indi-<lb/> viduen der übrigen <hi rendition="#i">r</hi> und <hi rendition="#i">s</hi> Aggreganten auch den Rest der auf sie<lb/> bezüglichen in 30<hi rendition="#sup">0</hi>) als Faktorungleichungen ausgedrückten Anforde-<lb/> rungen zu erfüllen. Dass heisst: man hat die Aufsuchung der Klausel<lb/> nur noch für eine Minderzahl von Symbolen und Propositionen weiter-<lb/> zuführen.</p><lb/> <p>Im ungünstigsten Falle kann diese „Minderzahl“ allerdings zu-<lb/> sammenfallen mit der bisherigen Anzahl <hi rendition="#i">n</hi> (wo sie natürlich solche<lb/> Bezeichnung streng genommen nicht verdient hätte). Und diesen Fall<lb/> wollen wir jetzt voraussetzen und allein noch weiter verfolgen, weil<lb/> er typisch ist für die andern Fälle, in denen man nur mit weniger<lb/> Symbolen <hi rendition="#i">r<hi rendition="#sup">ϰ</hi></hi>, <hi rendition="#i">s<hi rendition="#sup">λ</hi></hi> und auf sie bezüglichen Faktoranforderungen sich<lb/> herumzuschlagen hätte.</p><lb/> <p>Wir setzen also voraus dass von vornherein <hi rendition="#i">keines</hi> der Gebiete <hi rendition="#i">r<hi rendition="#sup">ϰ</hi><lb/> s<hi rendition="#sup">λ</hi></hi> über <hi rendition="#i">t</hi> hinausgreife, d. h. dass für jedes <hi rendition="#i">ϰ</hi>, <hi rendition="#i">λ</hi>:<lb/><hi rendition="#c"><hi rendition="#i">r<hi rendition="#sup">ϰ</hi> s</hi><hi rendition="#sub">1</hi> = 0, <hi rendition="#i">s<hi rendition="#sup">λ</hi> r</hi><hi rendition="#sub">1</hi> = 0</hi><lb/> sei. Alsdann ist aber auch:<lb/><hi rendition="#c"><hi rendition="#i">r s</hi><hi rendition="#sub">1</hi> = (<hi rendition="#i">r</hi><hi rendition="#sup">1</hi> + <hi rendition="#i">r</hi><hi rendition="#sup">2</hi> + ‥ + <hi rendition="#i">r<hi rendition="#sup">h</hi></hi>) <hi rendition="#i">s</hi><hi rendition="#sub">1</hi> = 0, <hi rendition="#i">s r</hi><hi rendition="#sub">1</hi> = (<hi rendition="#i">s</hi><hi rendition="#sup"><hi rendition="#i">h</hi> + 1</hi> + ‥ + <hi rendition="#i">s<hi rendition="#sup">n</hi></hi>) <hi rendition="#i">r</hi><hi rendition="#sub">1</hi> = 0,</hi><lb/> d. h. wir haben<lb/><hi rendition="#c"><hi rendition="#i">r s</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">r</hi><hi rendition="#sub">1</hi> <hi rendition="#i">s</hi> = 0</hi><lb/> oder<lb/><hi rendition="#c"><hi rendition="#i">r</hi> = <hi rendition="#i">s</hi> = <hi rendition="#i">r</hi> + <hi rendition="#i">s</hi> = <hi rendition="#i">r s</hi> = <hi rendition="#i">t</hi>.</hi></p><lb/> <p>Das Problem der Klausel gipfelt hienach in der schwierigen<lb/><hi rendition="#g">Aufgabe</hi>:</p><lb/> <p>Wenn zwei Reihen von nicht verschwindenden Gebieten ge-<lb/> geben sind:<lb/><hi rendition="#c"><hi rendition="#i">r</hi><hi rendition="#sup">1</hi>, <hi rendition="#i">r</hi><hi rendition="#sup">2</hi>, … <hi rendition="#i">r<hi rendition="#sup">h</hi></hi>, und <hi rendition="#i">s</hi><hi rendition="#sup"><hi rendition="#i">h</hi> + 1</hi>, <hi rendition="#i">s</hi><hi rendition="#sup"><hi rendition="#i">h</hi> + 2</hi>, … <hi rendition="#i">s<hi rendition="#sup">n</hi></hi>,</hi><lb/> derart dass die Gebiete einer jeden von diesen beiden Reihen <hi rendition="#i">zusammen</hi><lb/> genau die nämlichen Individuen oder Punkte umfassen, dass nämlich<lb/> 33<hi rendition="#sup">0</hi>) <hi rendition="#et"><hi rendition="#i">r</hi><hi rendition="#sup">1</hi> + <hi rendition="#i">r</hi><hi rendition="#sup">2</hi> + ‥ + <hi rendition="#i">r<hi rendition="#sup">h</hi></hi> = <hi rendition="#i">s</hi><hi rendition="#sup"><hi rendition="#i">h</hi> + 1</hi> + <hi rendition="#i">s</hi><hi rendition="#sup"><hi rendition="#i">h</hi> + 2</hi> + ‥ + <hi rendition="#i">s<hi rendition="#sup">n</hi></hi></hi><lb/></p> </div> </div> </div> </body> </text> </TEI> [392/0416]
Dreiundzwanzigste Vorlesung.
dann sämtlich disjunkt denen der letzteren Sorte oder der s-Reihe,
weil in den einander ausschliessenden Gebieten r, und r1, desgleichen
auch in denen s1 und s, enthalten — cf. § 46, 2. Hülfssatz. Hierauf
beruht es dass man in Bezug auf sie jedenfalls die Forderungen er-
füllen kann, welche 300) in sich schliesst, indem man nämlich die
rϰ s1 zu u, die sλ r1 zu u1 schlägt. Die betreffenden Aggreganten können
dann einfach samt den auf sie bezüglichen Faktorungleichungen der
Forderung 300) aus der ganzen Betrachtung fortgelassen werden und
wird nur mehr darnach zu trachten sein: durch geeignete Verteilung
auf u und u1 des Bestandes der dann gänzlich innerhalb t fallenden Indi-
viduen der übrigen r und s Aggreganten auch den Rest der auf sie
bezüglichen in 300) als Faktorungleichungen ausgedrückten Anforde-
rungen zu erfüllen. Dass heisst: man hat die Aufsuchung der Klausel
nur noch für eine Minderzahl von Symbolen und Propositionen weiter-
zuführen.
Im ungünstigsten Falle kann diese „Minderzahl“ allerdings zu-
sammenfallen mit der bisherigen Anzahl n (wo sie natürlich solche
Bezeichnung streng genommen nicht verdient hätte). Und diesen Fall
wollen wir jetzt voraussetzen und allein noch weiter verfolgen, weil
er typisch ist für die andern Fälle, in denen man nur mit weniger
Symbolen rϰ, sλ und auf sie bezüglichen Faktoranforderungen sich
herumzuschlagen hätte.
Wir setzen also voraus dass von vornherein keines der Gebiete rϰ
sλ über t hinausgreife, d. h. dass für jedes ϰ, λ:
rϰ s1 = 0, sλ r1 = 0
sei. Alsdann ist aber auch:
r s1 = (r1 + r2 + ‥ + rh) s1 = 0, s r1 = (sh + 1 + ‥ + sn) r1 = 0,
d. h. wir haben
r s1 + r1 s = 0
oder
r = s = r + s = r s = t.
Das Problem der Klausel gipfelt hienach in der schwierigen
Aufgabe:
Wenn zwei Reihen von nicht verschwindenden Gebieten ge-
geben sind:
r1, r2, … rh, und sh + 1, sh + 2, … sn,
derart dass die Gebiete einer jeden von diesen beiden Reihen zusammen
genau die nämlichen Individuen oder Punkte umfassen, dass nämlich
330) r1 + r2 + ‥ + rh = sh + 1 + sh + 2 + ‥ + sn
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |