Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.Dreiundzwanzigste Vorlesung. 11' · 11' = (A1 + B1 = 1) (B1 + C1 = 1) = (A1 C1 B + B1 = 1) (1 = 1) = i. 11' · 12' = (A1 + B1 = 1) (B1 + C = 1) = (A1 C B + B1 = 1) (1 = 1) = i. 11' · 13' = (A1 + B1 = 1) (B + C1 = 1) = (A1 B + C1 B1 = 1) (A1 + C1 = 1) = aA, C, Camestres, Calemes, desgleichen in C, A angesetzt: Celarent und 11' · 14' = (A1 + B1 = 1) (B + C = 1) = (A1 B + C B1 = 1) (A1 + C = 1) = cA, C. 11' · 111' = (A1 + B1 = 1) (B C 0) = (A1 B + B1 = 1) (C B 0) (C A1 0) = b1A, C, in C, A angesetzt: Ferio, Festino, Ferison, Fresison. 11' · 121' = (A1 + B1 = 1) (B C1 0) = (A1 B + B1 = 1) (C1 B 0) (C1 A1 0) = l1A, C. 11' · 131' = (A1 + B1 = 1) (B1 C 0) = (A1 B + B1 = 1) (C B1 0) (C 0). 11' · 141' = (A1 + B1 = 1) (B1 C1 0) = (A1 B + B1 = 1) (C1 B1 0) (C1 0). 12' · 12' = (A1 + B = 1) (B1 + C = 1) = (C B + A1 B1 = 1) (C + A1 = 1) = cA, C, Barbara. 12' · 13' = (A1 + B = 1) (B + C1 = 1) = (B + A1 C1 B1 = 1) (1 = 1) = i. 12' · 14' = (A1 + B = 1) (B + C = 1) = (B + A1 C B1 = 1) (1 = 1) = i. 12' · 111' = (A1 + B = 1) (B C 0) = (B + A1 B1 = 1) (C B 0) (C 0). 12' · 121' = (A1 + B = 1) (B C1 0) = (B + A1 B1 = 1) (C1 B 0) (C1 0). 12' · 131' = (A1 + B = 1) (B1 C 0) = (B + A1 B1 = 1) (C B1 0) (C A1 0) = b1A, C, in C, A angesetzt: Baroco. 12' · 141' = (A1 + B = 1) (B1 C1 0) = (B + A1 B1 = 1) (C1 B1 0) (C1 A1 0) = l1A, C. 13' · 13' = (A + B1 = 1) (B + C1 = 1) = (A B + C1 B1 = 1) (A + C1 = 1) = bA, C, in C, A: Barbara. 13' · 14' = (A + B1 = 1) (B + C = 1) = (A B + C B1 = 1) (A + C = 1) = lA, C. 13' · 111' = (A + B1 = 1) (B C 0) = (A B + B1 = 1) (C B 0) (C A 0) = a1A, C, Disamis, Dimatis, desgleichen in C, A: Darii und Datisi. Dreiundzwanzigste Vorlesung. 11’ · 11’ = (A1 + B1 = 1) (B1 + C1 = 1) = (A1 C1 B + B1 = 1) ⊆ (1 = 1) = i. 11’ · 12’ = (A1 + B1 = 1) (B1 + C = 1) = (A1 C B + B1 = 1) ⊆ (1 = 1) = i. 11’ · 13’ = (A1 + B1 = 1) (B + C1 = 1) = (A1 B + C1 B1 = 1) ⊆ (A1 + C1 = 1) = aA, C, Camestres, Calemes, desgleichen in C, A angesetzt: Celarent und 11’ · 14’ = (A1 + B1 = 1) (B + C = 1) = (A1 B + C B1 = 1) ⊆ (A1 + C = 1) = cA, C. 11’ · 111’ = (A1 + B1 = 1) (B C ≠ 0) = (A1 B + B1 = 1) (C B ≠ 0) ⊆ ⊆ (C A1 ≠ 0) = b1A, C, in C, A angesetzt: Ferio, Festino, Ferison, Fresison. 11’ · 121’ = (A1 + B1 = 1) (B C1 ≠ 0) = (A1 B + B1 = 1) (C1 B ≠ 0) ⊆ ⊆ (C1 A1 ≠ 0) = l1A, C. 11’ · 131’ = (A1 + B1 = 1) (B1 C ≠ 0) = (A1 B + B1 = 1) (C B1 ≠ 0) ⊆ (C ≠ 0). 11’ · 141’ = (A1 + B1 = 1) (B1 C1 ≠ 0) = (A1 B + B1 = 1) (C1 B1 ≠ 0) ⊆ (C1 ≠ 0). 12’ · 12’ = (A1 + B = 1) (B1 + C = 1) = (C B + A1 B1 = 1) ⊆ (C + A1 = 1) = cA, C, Barbara. 12’ · 13’ = (A1 + B = 1) (B + C1 = 1) = (B + A1 C1 B1 = 1) ⊆ (1 = 1) = i. 12’ · 14’ = (A1 + B = 1) (B + C = 1) = (B + A1 C B1 = 1) ⊆ (1 = 1) = i. 12’ · 111’ = (A1 + B = 1) (B C ≠ 0) = (B + A1 B1 = 1) (C B ≠ 0) ⊆ (C ≠ 0). 12’ · 121’ = (A1 + B = 1) (B C1 ≠ 0) = (B + A1 B1 = 1) (C1 B ≠ 0) ⊆ (C1 ≠ 0). 12’ · 131’ = (A1 + B = 1) (B1 C ≠ 0) = (B + A1 B1 = 1) (C B1 ≠ 0) ⊆ ⊆ (C A1 ≠ 0) = b1A, C, in C, A angesetzt: Baroco. 12’ · 141’ = (A1 + B = 1) (B1 C1 ≠ 0) = (B + A1 B1 = 1) (C1 B1 ≠ 0) ⊆ ⊆ (C1 A1 ≠ 0) = l1A, C. 13’ · 13’ = (A + B1 = 1) (B + C1 = 1) = (A B + C1 B1 = 1) ⊆ (A + C1 = 1) = bA, C, in C, A: Barbara. 13’ · 14’ = (A + B1 = 1) (B + C = 1) = (A B + C B1 = 1) ⊆ (A + C = 1) = lA, C. 13’ · 111’ = (A + B1 = 1) (B C ≠ 0) = (A B + B1 = 1) (C B ≠ 0) ⊆ ⊆ (C A ≠ 0) = a1A, C, Disamis, Dimatis, desgleichen in C, A: Darii und Datisi. <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <pb facs="#f0382" n="358"/> <fw place="top" type="header">Dreiundzwanzigste Vorlesung.</fw><lb/> <list> <item>11’ · 11’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig></orig><reg>⊆</reg></choice> (1 = 1) = i.</item><lb/> <item>11’ · 12’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">C</hi> = 1) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig></orig><reg>⊆</reg></choice> (1 = 1) = i.</item><lb/> <item>11’ · 13’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = <hi rendition="#i">a<hi rendition="#sup">A, C</hi></hi>,</item> </list><lb/> <p><hi rendition="#g">Camestres</hi>, <hi rendition="#g">Calemes</hi>, desgleichen in <hi rendition="#i">C</hi>, <hi rendition="#i">A</hi> angesetzt: <hi rendition="#g">Celarent</hi> und<lb/><hi rendition="#g">Cesare</hi>.</p><lb/> <list> <item>11’ · 14’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi> = 1) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">C B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">C</hi> = 1) = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>.</item><lb/> <item>11’ · 11<hi rendition="#sub">1</hi>’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B C</hi> ≠ 0) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C B</hi> ≠ 0) <choice><orig></orig><reg>⊆</reg></choice><lb/><choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">C A</hi><hi rendition="#sub">1</hi> ≠ 0) = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>,</item> </list><lb/> <p>in <hi rendition="#i">C</hi>, <hi rendition="#i">A</hi> angesetzt: <hi rendition="#g">Ferio</hi>, <hi rendition="#g">Festino</hi>, <hi rendition="#g">Ferison</hi>, <hi rendition="#g">Fresison</hi>.</p><lb/> <list> <item>11’ · 12<hi rendition="#sub">1</hi>’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B C</hi><hi rendition="#sub">1</hi> ≠ 0) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) <choice><orig></orig><reg>⊆</reg></choice><lb/><choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> ≠ 0) = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>.</item><lb/> <item>11’ · 13<hi rendition="#sub">1</hi>’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi> ≠ 0) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C B</hi><hi rendition="#sub">1</hi> ≠ 0) <choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">C</hi> ≠ 0).</item><lb/> <item>11’ · 14<hi rendition="#sub">1</hi>’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> ≠ 0) = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0) <choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> ≠ 0).</item><lb/> <item>12’ · 12’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">C</hi> = 1) = (<hi rendition="#i">C B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">C</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> = 1) = <hi rendition="#i">c</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>,</item> </list><lb/> <p><hi rendition="#g">Barbara</hi>.</p><lb/> <list> <item>12’ · 13’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig></orig><reg>⊆</reg></choice> (1 = 1) = i.</item><lb/> <item>12’ · 14’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi> = 1) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig></orig><reg>⊆</reg></choice> (1 = 1) = i.</item><lb/> <item>12’ · 11<hi rendition="#sub">1</hi>’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B C</hi> ≠ 0) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C B</hi> ≠ 0) <choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">C</hi> ≠ 0).</item><lb/> <item>12’ · 12<hi rendition="#sub">1</hi>’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B C</hi><hi rendition="#sub">1</hi> ≠ 0) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) <choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> ≠ 0).</item><lb/> <item>12’ · 13<hi rendition="#sub">1</hi>’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi> ≠ 0) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C B</hi><hi rendition="#sub">1</hi> ≠ 0) <choice><orig></orig><reg>⊆</reg></choice><lb/><choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">C A</hi><hi rendition="#sub">1</hi> ≠ 0) = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>,</item> </list><lb/> <p>in <hi rendition="#i">C</hi>, <hi rendition="#i">A</hi> angesetzt: <hi rendition="#g">Baroco</hi>.</p><lb/> <list> <item>12’ · 14<hi rendition="#sub">1</hi>’ = (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">B</hi> = 1) (<hi rendition="#i">B</hi><hi rendition="#sub">1</hi> <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> ≠ 0) = (<hi rendition="#i">B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0) <choice><orig></orig><reg>⊆</reg></choice><lb/><choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> ≠ 0) = <hi rendition="#i">l</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>.</item><lb/> <item>13’ · 13’ = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = (<hi rendition="#i">A B</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">A</hi> + <hi rendition="#i">C</hi><hi rendition="#sub">1</hi> = 1) = <hi rendition="#i">b</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>,</item> </list><lb/> <p>in <hi rendition="#i">C</hi>, <hi rendition="#i">A</hi>: <hi rendition="#g">Barbara</hi>.</p><lb/> <list> <item>13’ · 14’ = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B</hi> + <hi rendition="#i">C</hi> = 1) = (<hi rendition="#i">A B</hi> + <hi rendition="#i">C B</hi><hi rendition="#sub">1</hi> = 1) <choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">A</hi> + <hi rendition="#i">C</hi> = 1) = <hi rendition="#i">l</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>.</item><lb/> <item>13’ · 11<hi rendition="#sub">1</hi>’ = (<hi rendition="#i">A</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">B C</hi> ≠ 0) = (<hi rendition="#i">A B</hi> + <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 1) (<hi rendition="#i">C B</hi> ≠ 0) <choice><orig></orig><reg>⊆</reg></choice><lb/><choice><orig></orig><reg>⊆</reg></choice> (<hi rendition="#i">C A</hi> ≠ 0) = <hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#sup"><hi rendition="#i">A</hi>, <hi rendition="#i">C</hi></hi>,</item> </list><lb/> <p><hi rendition="#g">Disamis</hi>, <hi rendition="#g">Dimatis</hi>, desgleichen in <hi rendition="#i">C</hi>, <hi rendition="#i">A</hi>: <hi rendition="#g">Darii</hi> und <hi rendition="#g">Datisi</hi>.</p><lb/> </div> </div> </div> </body> </text> </TEI> [358/0382]
Dreiundzwanzigste Vorlesung.
11’ · 11’ = (A1 + B1 = 1) (B1 + C1 = 1) = (A1 C1 B + B1 = 1)  (1 = 1) = i.
11’ · 12’ = (A1 + B1 = 1) (B1 + C = 1) = (A1 C B + B1 = 1)  (1 = 1) = i.
11’ · 13’ = (A1 + B1 = 1) (B + C1 = 1) = (A1 B + C1 B1 = 1)  (A1 + C1 = 1) = aA, C,
Camestres, Calemes, desgleichen in C, A angesetzt: Celarent und
Cesare.
11’ · 14’ = (A1 + B1 = 1) (B + C = 1) = (A1 B + C B1 = 1)  (A1 + C = 1) = cA, C.
11’ · 111’ = (A1 + B1 = 1) (B C ≠ 0) = (A1 B + B1 = 1) (C B ≠ 0) 
 (C A1 ≠ 0) = b1A, C,
in C, A angesetzt: Ferio, Festino, Ferison, Fresison.
11’ · 121’ = (A1 + B1 = 1) (B C1 ≠ 0) = (A1 B + B1 = 1) (C1 B ≠ 0) 
 (C1 A1 ≠ 0) = l1A, C.
11’ · 131’ = (A1 + B1 = 1) (B1 C ≠ 0) = (A1 B + B1 = 1) (C B1 ≠ 0)  (C ≠ 0).
11’ · 141’ = (A1 + B1 = 1) (B1 C1 ≠ 0) = (A1 B + B1 = 1) (C1 B1 ≠ 0)  (C1 ≠ 0).
12’ · 12’ = (A1 + B = 1) (B1 + C = 1) = (C B + A1 B1 = 1)  (C + A1 = 1) = cA, C,
Barbara.
12’ · 13’ = (A1 + B = 1) (B + C1 = 1) = (B + A1 C1 B1 = 1)  (1 = 1) = i.
12’ · 14’ = (A1 + B = 1) (B + C = 1) = (B + A1 C B1 = 1)  (1 = 1) = i.
12’ · 111’ = (A1 + B = 1) (B C ≠ 0) = (B + A1 B1 = 1) (C B ≠ 0)  (C ≠ 0).
12’ · 121’ = (A1 + B = 1) (B C1 ≠ 0) = (B + A1 B1 = 1) (C1 B ≠ 0)  (C1 ≠ 0).
12’ · 131’ = (A1 + B = 1) (B1 C ≠ 0) = (B + A1 B1 = 1) (C B1 ≠ 0) 
 (C A1 ≠ 0) = b1A, C,
in C, A angesetzt: Baroco.
12’ · 141’ = (A1 + B = 1) (B1 C1 ≠ 0) = (B + A1 B1 = 1) (C1 B1 ≠ 0) 
 (C1 A1 ≠ 0) = l1A, C.
13’ · 13’ = (A + B1 = 1) (B + C1 = 1) = (A B + C1 B1 = 1)  (A + C1 = 1) = bA, C,
in C, A: Barbara.
13’ · 14’ = (A + B1 = 1) (B + C = 1) = (A B + C B1 = 1)  (A + C = 1) = lA, C.
13’ · 111’ = (A + B1 = 1) (B C ≠ 0) = (A B + B1 = 1) (C B ≠ 0) 
 (C A ≠ 0) = a1A, C,
Disamis, Dimatis, desgleichen in C, A: Darii und Datisi.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |