Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.§ 44. Über Subalternation und Konversion. fielen -- wie bei dem Schlusse von a b c auf a b, oder von a b 0auf a 0. Im engsten Sinne sollen die "unmittelbaren Folgerungen" blos an- Eine solche Folgerung heisst Konversion, wenn Subjekt und Prädi- Die Frage ist also, falls man für A als Subjekt und B als Prädi-
Es liessen sich 8 x 7 = 56 Paare von Urteilen aus diesen 8 Ur- Die Frage lässt sich indessen summarisch dahin erledigen: Zu-
(inclusive 0 oder 1) exemplifizirend, mit grösster Leichtigkeit darthun, dass kein einziges aus einem andern gefolgert werden kann. Diese sechs sind gänzlich unabhängig von einander. Jede Subsumtion, angesetzt zwischen zweien von diesen sechserlei § 44. Über Subalternation und Konversion. fielen — wie bei dem Schlusse von a ⊆ b c auf a ⊆ b, oder von a b ≠ 0auf a ≠ 0. Im engsten Sinne sollen die „unmittelbaren Folgerungen“ blos an- Eine solche Folgerung heisst Konversion, wenn Subjekt und Prädi- Die Frage ist also, falls man für A als Subjekt und B als Prädi-
Es liessen sich 8 × 7 = 56 Paare von Urteilen aus diesen 8 Ur- Die Frage lässt sich indessen summarisch dahin erledigen: Zu-
(inclusive 0 oder 1) exemplifizirend, mit grösster Leichtigkeit darthun, dass kein einziges aus einem andern gefolgert werden kann. Diese sechs sind gänzlich unabhängig von einander. Jede Subsumtion, angesetzt zwischen zweien von diesen sechserlei <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0269" n="245"/><fw place="top" type="header">§ 44. Über Subalternation und Konversion.</fw><lb/> fielen — wie bei dem Schlusse von <hi rendition="#i">a</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">b c</hi> auf <hi rendition="#i">a</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">b</hi>, oder von <hi rendition="#i">a b</hi> ≠ 0<lb/> auf <hi rendition="#i">a</hi> ≠ 0.</p><lb/> <p>Im engsten Sinne sollen die „unmittelbaren Folgerungen“ blos an-<lb/> geben — wenn ein kategorisches Urteil (von einer der vier Arten)<lb/> zwischen zwei Termen gegeben ist, welche andern kategorischen Urteile<lb/> (wiederum von einer dieser vier Arten) <hi rendition="#i">in Bezug auf diese nämlichen<lb/> beiden Terme</hi> daraus gefolgert werden können.</p><lb/> <p>Eine solche Folgerung heisst <hi rendition="#i">Konversion</hi>, wenn Subjekt und Prädi-<lb/> kat der Prämisse in der Konklusion bezüglich auftreten als Prädikat<lb/> und Subjekt — wenn dieselben mithin beim Schliessen ihre Rollen<lb/> getauscht, ihren Charakter verkehrt, konvertirt haben.</p><lb/> <p>Die Frage ist also, falls man für <hi rendition="#i">A</hi> als Subjekt und <hi rendition="#i">B</hi> als Prädi-<lb/> kat die vier Urteile <hi rendition="#i">a</hi>, <hi rendition="#i">e</hi>, <hi rendition="#i">i</hi>, <hi rendition="#i">o</hi> des § 33 hinschreibt und dasselbe her-<lb/> nach thut für <hi rendition="#i">B</hi> als Subjekt und <hi rendition="#i">A</hi> als Prädikat: welches von den<lb/> erhaltenen acht Urteilen:<lb/><table><row><cell><hi rendition="#i">A</hi><choice><orig></orig><reg>⊆</reg></choice><hi rendition="#i">B</hi>,</cell><cell><hi rendition="#i">A</hi><choice><orig></orig><reg>⊆</reg></choice><hi rendition="#i">B</hi><hi rendition="#sub">1</hi>,</cell><cell><hi rendition="#i">A B</hi> ≠ 0,</cell><cell><hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0</cell></row><lb/><row><cell><hi rendition="#i">B</hi><choice><orig></orig><reg>⊆</reg></choice><hi rendition="#i">A</hi>,</cell><cell><hi rendition="#i">B</hi><choice><orig></orig><reg>⊆</reg></choice><hi rendition="#i">A</hi><hi rendition="#sub">1</hi>,</cell><cell><hi rendition="#i">B A</hi> ≠ 0,</cell><cell><hi rendition="#i">B A</hi><hi rendition="#sub">1</hi> ≠ 0</cell></row><lb/></table> aus irgend einem andern von ihnen gefolgert werden könne?</p><lb/> <p>Es liessen sich 8 × 7 = 56 Paare von Urteilen aus diesen 8 Ur-<lb/> teilen herstellen, von welchen also jeweils die Frage zu beantworten<lb/> wäre, ob das zweite Urteil des Paares aus dem ersten folgt oder nicht.</p><lb/> <p>Die Frage lässt sich indessen summarisch dahin erledigen: Zu-<lb/> folge der Äquivalenz von einzelnen laufen die acht Urteile auf nur<lb/> sechs verschiedene hinaus, nämlich auf die nachfolgend in Klammern<lb/> angeführten:<lb/><table><row><cell>(<hi rendition="#i">A</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">B</hi>) = (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> = 0),</cell><cell>(<hi rendition="#i">B</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">A</hi> ) = (<hi rendition="#i">B A</hi><hi rendition="#sub">1</hi> = 0),</cell></row><lb/><row><cell cols="2">(<hi rendition="#i">A</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi>) = (<hi rendition="#i">A B</hi> = 0) = (<hi rendition="#i">B A</hi> = 0) = (<hi rendition="#i">B</hi> <choice><orig></orig><reg>⊆</reg></choice> <hi rendition="#i">A</hi><hi rendition="#sub">1</hi>),</cell></row><lb/><row><cell cols="2">(<hi rendition="#i">A B</hi> ≠ 0) = (<hi rendition="#i">B A</hi> ≠ 0),</cell></row><lb/><row><cell>(<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0),</cell><cell>(<hi rendition="#i">B A</hi><hi rendition="#sub">1</hi> ≠ 0)</cell></row><lb/></table> und von diesen wird der Leser, auf Gebiete oder auch auf Klassen<lb/> (inclusive 0 oder 1) exemplifizirend, mit grösster Leichtigkeit darthun,<lb/> dass <hi rendition="#i">kein einziges</hi> aus einem andern gefolgert werden kann. Diese sechs<lb/> sind <hi rendition="#i">gänzlich unabhängig von einander</hi>.</p><lb/> <p>Jede Subsumtion, angesetzt zwischen zweien von diesen sechserlei<lb/> Aussagen, läuft zudem nicht auf eine Formel, sondern vielmehr auf eine<lb/> Relation hinaus (vergl. § 20 und 32) — ein Umstand, dessen empirische<lb/> Verifikation vereinfacht werden kann durch die Bemerkung, dass die sechs<lb/> Aussagen zerfallen in zwei Tripel von einander paarweise entsprechenden:<lb/></p> </div> </div> </div> </body> </text> </TEI> [245/0269]
§ 44. Über Subalternation und Konversion.
fielen — wie bei dem Schlusse von a  b c auf a  b, oder von a b ≠ 0
auf a ≠ 0.
Im engsten Sinne sollen die „unmittelbaren Folgerungen“ blos an-
geben — wenn ein kategorisches Urteil (von einer der vier Arten)
zwischen zwei Termen gegeben ist, welche andern kategorischen Urteile
(wiederum von einer dieser vier Arten) in Bezug auf diese nämlichen
beiden Terme daraus gefolgert werden können.
Eine solche Folgerung heisst Konversion, wenn Subjekt und Prädi-
kat der Prämisse in der Konklusion bezüglich auftreten als Prädikat
und Subjekt — wenn dieselben mithin beim Schliessen ihre Rollen
getauscht, ihren Charakter verkehrt, konvertirt haben.
Die Frage ist also, falls man für A als Subjekt und B als Prädi-
kat die vier Urteile a, e, i, o des § 33 hinschreibt und dasselbe her-
nach thut für B als Subjekt und A als Prädikat: welches von den
erhaltenen acht Urteilen:
A  B, A  B1, A B ≠ 0, A B1 ≠ 0
B  A, B  A1, B A ≠ 0, B A1 ≠ 0
aus irgend einem andern von ihnen gefolgert werden könne?
Es liessen sich 8 × 7 = 56 Paare von Urteilen aus diesen 8 Ur-
teilen herstellen, von welchen also jeweils die Frage zu beantworten
wäre, ob das zweite Urteil des Paares aus dem ersten folgt oder nicht.
Die Frage lässt sich indessen summarisch dahin erledigen: Zu-
folge der Äquivalenz von einzelnen laufen die acht Urteile auf nur
sechs verschiedene hinaus, nämlich auf die nachfolgend in Klammern
angeführten:
(A  B) = (A B1 = 0), (B  A ) = (B A1 = 0),
(A  B1) = (A B = 0) = (B A = 0) = (B  A1),
(A B ≠ 0) = (B A ≠ 0),
(A B1 ≠ 0), (B A1 ≠ 0)
und von diesen wird der Leser, auf Gebiete oder auch auf Klassen
(inclusive 0 oder 1) exemplifizirend, mit grösster Leichtigkeit darthun,
dass kein einziges aus einem andern gefolgert werden kann. Diese sechs
sind gänzlich unabhängig von einander.
Jede Subsumtion, angesetzt zwischen zweien von diesen sechserlei
Aussagen, läuft zudem nicht auf eine Formel, sondern vielmehr auf eine
Relation hinaus (vergl. § 20 und 32) — ein Umstand, dessen empirische
Verifikation vereinfacht werden kann durch die Bemerkung, dass die sechs
Aussagen zerfallen in zwei Tripel von einander paarweise entsprechenden:
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |