Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.§ 39. Die denkbaren Umfangsbeziehungen überhaupt. Diese 9 Aussagen können jeweils selbständig, es können beliebige Diese von den 32 767 in Abzug gebracht, lassen 32 255 Aussagen Noch eine andere wichtige Frage über die 32 767 Aussagen be- Beschränken wir die Logik wiederum auf ihre "erste Etappe", wo sie In der That können diesmal nur die vier primitiven Aussagen De Mor- Wir haben also bei der eingeführten Beschränkung der Logik anstatt § 39. Die denkbaren Umfangsbeziehungen überhaupt. Diese 9 Aussagen können jeweils selbständig, es können beliebige Diese von den 32 767 in Abzug gebracht, lassen 32 255 Aussagen Noch eine andere wichtige Frage über die 32 767 Aussagen be- Beschränken wir die Logik wiederum auf ihre „erste Etappe“, wo sie In der That können diesmal nur die vier primitiven Aussagen De Mor- Wir haben also bei der eingeführten Beschränkung der Logik anstatt <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <pb facs="#f0183" n="159"/> <fw place="top" type="header">§ 39. Die denkbaren Umfangsbeziehungen überhaupt.</fw><lb/> <p>Diese 9 Aussagen können jeweils selbständig, es können beliebige<lb/> Alternativen zwischen denselben statuirt werden. Dies gibt<lb/><hi rendition="#c">2<hi rendition="#sup">9</hi> = 512</hi><lb/> mögliche verschiedene Aussagen. Von diesen verweist diejenige, bei<lb/> welcher alle 9 Konstituenten mit dem Koeffizienten 0 behaftet auf-<lb/> treten, auf die „identische“ Aussage 0 = 0 als den einzigen <hi rendition="#i">zulässigen</hi><lb/> Fall unter den noch erdenklichen Aussagen, welche unsrer Definition<lb/> gemäss den „zerfallenden“ zugezählt werden müssen. Mithin <hi rendition="#i">sind</hi> 512<lb/><hi rendition="#i">zerfallende Aussagen über A und B zulässig</hi>.</p><lb/> <p>Diese von den 32 767 in Abzug gebracht, lassen 32 255 Aussagen<lb/> übrig, in welche mindestens eine „nicht zerfallende“, nämlich eine wirk-<lb/> liche Umfangsbeziehung zwischen <hi rendition="#i">A</hi> und <hi rendition="#i">B</hi> statuirende Aussage eingeht —<lb/> zum wenigsten als ein Glied oder Faktor eines Gliedes, d. i. als ein Alter-<lb/> nativfall oder als eine simultane Forderung oder Mitbedingung in einem<lb/> solchen. — Die Zahl 512 nebst den beiden sogleich noch abzuleitenden 166<lb/> und 47 (jene ungenau als 511 und 168) hatte ich in <hi rendition="#sup">9</hi> bekannt gegeben.</p><lb/> <p>Noch eine andere wichtige Frage über die 32 767 Aussagen be-<lb/> trifft ihre Scheidung in universale und (mit-)partikulare. Diese soll<lb/> jetzt (im Kontext) zur Entscheidung gebracht werden.</p><lb/> <p>Beschränken wir die Logik wiederum auf ihre <hi rendition="#i">„erste Etappe“,</hi> wo sie<lb/> nur über Subsumtions- und Gleichheitszeichen, nicht aber über deren Ver-<lb/> neinung verfügt, sonach partikulare (oder affirmative Existenzial-) Urteile noch<lb/> nicht auszudrücken vermag, so ist 16 — 1 = 15 die Anzahl der jetzt über<lb/> zwei Klassen <hi rendition="#i">A</hi>, <hi rendition="#i">B</hi> zulässigen „einfachen“ oder monomischen Aussagen.</p><lb/> <p>In der That können diesmal nur die vier primitiven Aussagen <hi rendition="#g">De Mor-<lb/> gan’</hi>s als da sind (in den dortigen Bezeichnungen):<lb/><hi rendition="#c"><hi rendition="#i">a</hi>, <hi rendition="#i">c</hi>, <hi rendition="#i">b</hi>, <hi rendition="#i">l</hi></hi><lb/> nicht aber deren Verneinungen abgegebeu werden. Hiermit dann lassen<lb/> sich herstellen die sechs binären:<lb/><hi rendition="#c"><hi rendition="#i">a c</hi>, <hi rendition="#i">a b</hi>, <hi rendition="#i">a l</hi>, <hi rendition="#i">c b</hi>, <hi rendition="#i">c l</hi>, <hi rendition="#i">b l</hi>,</hi><lb/> und die vier ternären Aussagen:<lb/><hi rendition="#c"><hi rendition="#i">a c b</hi>, <hi rendition="#i">a c l</hi>, <hi rendition="#i">a b l</hi>, <hi rendition="#i">c b l</hi>,</hi><lb/> zu welchen bisherigen 14 Aussagen sich als 15te noch die nichtssagende<lb/> 0 = 0 gesellt die immer gilt, aussagenrechnerisch = i ist — wogegen<lb/> die absurde Aussage durch die hier einzig denkbare quaternäre Aussage<lb/><hi rendition="#i">a c b l</hi> dargestellt würde, welche jedoch nie gelten kann, unzulässig, aussagen-<lb/> rechnerisch = 0 ist.</p><lb/> <p>Wir haben also bei der eingeführten Beschränkung der Logik anstatt<lb/> (und von) den früheren 75 „einfachen“ oder „monomischen“ Urteilen nur<lb/> mehr 14 abgebbare.</p><lb/> </div> </div> </div> </body> </text> </TEI> [159/0183]
§ 39. Die denkbaren Umfangsbeziehungen überhaupt.
Diese 9 Aussagen können jeweils selbständig, es können beliebige
Alternativen zwischen denselben statuirt werden. Dies gibt
29 = 512
mögliche verschiedene Aussagen. Von diesen verweist diejenige, bei
welcher alle 9 Konstituenten mit dem Koeffizienten 0 behaftet auf-
treten, auf die „identische“ Aussage 0 = 0 als den einzigen zulässigen
Fall unter den noch erdenklichen Aussagen, welche unsrer Definition
gemäss den „zerfallenden“ zugezählt werden müssen. Mithin sind 512
zerfallende Aussagen über A und B zulässig.
Diese von den 32 767 in Abzug gebracht, lassen 32 255 Aussagen
übrig, in welche mindestens eine „nicht zerfallende“, nämlich eine wirk-
liche Umfangsbeziehung zwischen A und B statuirende Aussage eingeht —
zum wenigsten als ein Glied oder Faktor eines Gliedes, d. i. als ein Alter-
nativfall oder als eine simultane Forderung oder Mitbedingung in einem
solchen. — Die Zahl 512 nebst den beiden sogleich noch abzuleitenden 166
und 47 (jene ungenau als 511 und 168) hatte ich in 9 bekannt gegeben.
Noch eine andere wichtige Frage über die 32 767 Aussagen be-
trifft ihre Scheidung in universale und (mit-)partikulare. Diese soll
jetzt (im Kontext) zur Entscheidung gebracht werden.
Beschränken wir die Logik wiederum auf ihre „erste Etappe“, wo sie
nur über Subsumtions- und Gleichheitszeichen, nicht aber über deren Ver-
neinung verfügt, sonach partikulare (oder affirmative Existenzial-) Urteile noch
nicht auszudrücken vermag, so ist 16 — 1 = 15 die Anzahl der jetzt über
zwei Klassen A, B zulässigen „einfachen“ oder monomischen Aussagen.
In der That können diesmal nur die vier primitiven Aussagen De Mor-
gan’s als da sind (in den dortigen Bezeichnungen):
a, c, b, l
nicht aber deren Verneinungen abgegebeu werden. Hiermit dann lassen
sich herstellen die sechs binären:
a c, a b, a l, c b, c l, b l,
und die vier ternären Aussagen:
a c b, a c l, a b l, c b l,
zu welchen bisherigen 14 Aussagen sich als 15te noch die nichtssagende
0 = 0 gesellt die immer gilt, aussagenrechnerisch = i ist — wogegen
die absurde Aussage durch die hier einzig denkbare quaternäre Aussage
a c b l dargestellt würde, welche jedoch nie gelten kann, unzulässig, aussagen-
rechnerisch = 0 ist.
Wir haben also bei der eingeführten Beschränkung der Logik anstatt
(und von) den früheren 75 „einfachen“ oder „monomischen“ Urteilen nur
mehr 14 abgebbare.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |