Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 4. Berlin, Wien, 1913.

Bild:
<< vorherige Seite

raschere Beschleunigung, schnellere Bewegungsfähigkeit auf den Endstationen und beim Verschub, kleinere Erhaltungskosten und dementsprechend geringerer Zeitverlust in den Reparaturwerkstätten, schnellere Behandlung in den Remisen, Wegfall der Reinigung des Kessels, keine Wasser- und Kohlenaufnahme und endlich Entfallen des bei Dampflokomotiven am Ende der Diensttour zumeist erforderlichen Wendens.

Außer den erwähnten Vorteilen hat die elektrische Lokomotive gegenüber der Dampflokomotive auch noch andere Vorteile, die aber mehr mit dem allgemeinen Vorteile der elektrischen Traktion als solcher zusammenhängen, so die billigere Krafterzeugung, die Möglichkeit der Rückgewinnung der Energie in Gefällen, die Rauchfreiheit, die insbesondere bei Tunnelbetrieb von großem Wert ist, u. s. w.

In der Tab. 1 (Seite 239) sind zum Vergleiche die Leistungen, Abmessungen und Gewichte einiger Dampf- und elektrischen Lokomotiven der italienischen Staatsbahnen zusammengestellt.

Was die Stromsysteme für elektrische Lokomotiven anbelangt, so haben (von einzelnen Ausnahmen abgesehen) bisher die Systeme mit Gleichstrom, einphasigem Wechselstrom und dreiphasigem Wechselstrom (Drehstrom) größere Verbreitung gefunden.

Lokomotivbauarten.

Beim Bau elektrischer Lokomotiven sind vor allem folgende zwei Gesichtspunkte maßgebend.

1. Die die Antriebskraft liefernden Elektromotoren müssen mit dem Laufwerk in geeigneter Weise in Verbindung gebracht werden.

2. Die Lokomotive muß entsprechend der Beschaffenheit der Bahnlinie und der verlangten Fahrgeschwindigkeit mit einem geeigneten Laufwerk versehen werden.

Der treibende Elektromotor arbeitet bei allen in Frage kommenden Systemen um so günstiger und kann mit umso kleineren Dimensionen hergestellt werden, je größer die Umlaufgeschwindigkeit des Motors ist. Demgegenüber ist die Umlaufzahl der Triebräder einerseits durch die Fahrgeschwindigkeit der Lokomotive, anderseits aber durch den praktisch anwendbaren Raddurchmesser gegeben.

Die Entwicklung der stationären Elektromotoren geschah mit einer verhältnismäßig hohen Umlaufgeschwindigkeit. Für Traktionszwecke wurde der Elektromotor mit beschränkter Leistungsfähigkeit zuerst im Straßenbahnbetrieb angewendet. Die erste praktisch ausgebildete Triebart, die auch bei Lokomotiven verwendet wurde, war die mit Zahnradübersetzung.

Die allgemeine Lösung besteht darin, daß der Elektromotor mit einfacher Zahnradübersetzung die Triebachsen der Lokomotive antreibt. Die Zahnräder selbst sind in einem abgedichteten Schutzkasten untergebracht; der Motor stützt sich einerseits mit zwei Lagern, die mit dem Motorgehäuse konstruktiv zusammenhängen auf die Laufachse, anderseits wird er aber durch die Zwischenschaltung von Federn elastisch aufgehängt. Die elastische Aufhängung geschieht in den meisten Fällen in der Weise, daß die an der Seite des Motorgehäuses angebrachten Nasen sich auf Spiralfedern stützen. Es haben sich zwar für die Aufhängung der Motoren vielerlei andere Bauarten (so z. B. wo das Motorgehäuse im Schwerpunkte unterstützt worden ist) entwickelt, die jedoch keine allgemeine Verbreitung gefunden haben.

Da bei der Lösung mit einfacher Zahnradübersetzung der Motor und die Zahnräder zwischen den Triebrädern angeordnet werden müssen, sind die Dimensionen des Motors in der Breite durch die Spurweite gegeben, wodurch auch ihre Leistungsfähigkeit begrenzt ist. Dementsprechend mußten bei größeren Lokomotiven mit Zahnradantrieb mindestens ebensoviel Motoren angewendet werden als Laufachsen vorhanden waren. In manchen Fällen, wo eine sehr hohe Lokomotivleistung verlangt wird, so z. B. bei den neuesten Einphasen-Lokomotiven der New York-New Haven and Hartford-Bahn, wurden sogar Lösungen angewendet, bei denen die einzelnen Lokomotivachsen durch je zwei Motoren angetrieben werden.

Die Verteilung der notwendigen Lokomotivleistung in mehrere kleinere Einheiten ist an und für sich ein Nachteil. Bei großen Lokomotivleistungen entfallen auf die einzelnen Motoren selbst ziemlich große Leistungen, bei denen überdies die Anwendung des Zahnradantriebes Bedenken verursacht, umsomehr, als der Platz für die Zahnräder von dem dem Motor zur Verfügung stehenden Raum abgespart werden muß, und dementsprechend ihre mögliche Breite beschränkt wird. Zahnräder mit hoher Zahngeschwindigkeit, verhältnismäßig kleiner Breite und großer Leistung, sind wegen ihrer schnellen Abnutzung und beschränkten Betriebssicherheit kein erwünschter Bestandteil einer Vollbahnlokomotive.

Es ist aus diesen Gründen das Bestreben, bei elektrischen Lokomotiven die Zahnradübersetzung zu vermeiden, beinahe ebenso alt wie die elektrische Lokomotive selbst. Die nächstliegende Lösung bestand in direkt auf der Triebachse der Lokomotive angebrachten Elektromotoren für geringe Tourenzahl.

raschere Beschleunigung, schnellere Bewegungsfähigkeit auf den Endstationen und beim Verschub, kleinere Erhaltungskosten und dementsprechend geringerer Zeitverlust in den Reparaturwerkstätten, schnellere Behandlung in den Remisen, Wegfall der Reinigung des Kessels, keine Wasser- und Kohlenaufnahme und endlich Entfallen des bei Dampflokomotiven am Ende der Diensttour zumeist erforderlichen Wendens.

Außer den erwähnten Vorteilen hat die elektrische Lokomotive gegenüber der Dampflokomotive auch noch andere Vorteile, die aber mehr mit dem allgemeinen Vorteile der elektrischen Traktion als solcher zusammenhängen, so die billigere Krafterzeugung, die Möglichkeit der Rückgewinnung der Energie in Gefällen, die Rauchfreiheit, die insbesondere bei Tunnelbetrieb von großem Wert ist, u. s. w.

In der Tab. 1 (Seite 239) sind zum Vergleiche die Leistungen, Abmessungen und Gewichte einiger Dampf- und elektrischen Lokomotiven der italienischen Staatsbahnen zusammengestellt.

Was die Stromsysteme für elektrische Lokomotiven anbelangt, so haben (von einzelnen Ausnahmen abgesehen) bisher die Systeme mit Gleichstrom, einphasigem Wechselstrom und dreiphasigem Wechselstrom (Drehstrom) größere Verbreitung gefunden.

Lokomotivbauarten.

Beim Bau elektrischer Lokomotiven sind vor allem folgende zwei Gesichtspunkte maßgebend.

1. Die die Antriebskraft liefernden Elektromotoren müssen mit dem Laufwerk in geeigneter Weise in Verbindung gebracht werden.

2. Die Lokomotive muß entsprechend der Beschaffenheit der Bahnlinie und der verlangten Fahrgeschwindigkeit mit einem geeigneten Laufwerk versehen werden.

Der treibende Elektromotor arbeitet bei allen in Frage kommenden Systemen um so günstiger und kann mit umso kleineren Dimensionen hergestellt werden, je größer die Umlaufgeschwindigkeit des Motors ist. Demgegenüber ist die Umlaufzahl der Triebräder einerseits durch die Fahrgeschwindigkeit der Lokomotive, anderseits aber durch den praktisch anwendbaren Raddurchmesser gegeben.

Die Entwicklung der stationären Elektromotoren geschah mit einer verhältnismäßig hohen Umlaufgeschwindigkeit. Für Traktionszwecke wurde der Elektromotor mit beschränkter Leistungsfähigkeit zuerst im Straßenbahnbetrieb angewendet. Die erste praktisch ausgebildete Triebart, die auch bei Lokomotiven verwendet wurde, war die mit Zahnradübersetzung.

Die allgemeine Lösung besteht darin, daß der Elektromotor mit einfacher Zahnradübersetzung die Triebachsen der Lokomotive antreibt. Die Zahnräder selbst sind in einem abgedichteten Schutzkasten untergebracht; der Motor stützt sich einerseits mit zwei Lagern, die mit dem Motorgehäuse konstruktiv zusammenhängen auf die Laufachse, anderseits wird er aber durch die Zwischenschaltung von Federn elastisch aufgehängt. Die elastische Aufhängung geschieht in den meisten Fällen in der Weise, daß die an der Seite des Motorgehäuses angebrachten Nasen sich auf Spiralfedern stützen. Es haben sich zwar für die Aufhängung der Motoren vielerlei andere Bauarten (so z. B. wo das Motorgehäuse im Schwerpunkte unterstützt worden ist) entwickelt, die jedoch keine allgemeine Verbreitung gefunden haben.

Da bei der Lösung mit einfacher Zahnradübersetzung der Motor und die Zahnräder zwischen den Triebrädern angeordnet werden müssen, sind die Dimensionen des Motors in der Breite durch die Spurweite gegeben, wodurch auch ihre Leistungsfähigkeit begrenzt ist. Dementsprechend mußten bei größeren Lokomotiven mit Zahnradantrieb mindestens ebensoviel Motoren angewendet werden als Laufachsen vorhanden waren. In manchen Fällen, wo eine sehr hohe Lokomotivleistung verlangt wird, so z. B. bei den neuesten Einphasen-Lokomotiven der New York-New Haven and Hartford-Bahn, wurden sogar Lösungen angewendet, bei denen die einzelnen Lokomotivachsen durch je zwei Motoren angetrieben werden.

Die Verteilung der notwendigen Lokomotivleistung in mehrere kleinere Einheiten ist an und für sich ein Nachteil. Bei großen Lokomotivleistungen entfallen auf die einzelnen Motoren selbst ziemlich große Leistungen, bei denen überdies die Anwendung des Zahnradantriebes Bedenken verursacht, umsomehr, als der Platz für die Zahnräder von dem dem Motor zur Verfügung stehenden Raum abgespart werden muß, und dementsprechend ihre mögliche Breite beschränkt wird. Zahnräder mit hoher Zahngeschwindigkeit, verhältnismäßig kleiner Breite und großer Leistung, sind wegen ihrer schnellen Abnutzung und beschränkten Betriebssicherheit kein erwünschter Bestandteil einer Vollbahnlokomotive.

Es ist aus diesen Gründen das Bestreben, bei elektrischen Lokomotiven die Zahnradübersetzung zu vermeiden, beinahe ebenso alt wie die elektrische Lokomotive selbst. Die nächstliegende Lösung bestand in direkt auf der Triebachse der Lokomotive angebrachten Elektromotoren für geringe Tourenzahl.

<TEI>
  <text>
    <body>
      <div n="1">
        <div type="lexiconEntry" n="2">
          <p><pb facs="#f0250" n="240"/>
raschere Beschleunigung, schnellere Bewegungsfähigkeit auf den Endstationen und beim Verschub, kleinere Erhaltungskosten und dementsprechend geringerer Zeitverlust in den Reparaturwerkstätten, schnellere Behandlung in den Remisen, Wegfall der Reinigung des Kessels, keine Wasser- und Kohlenaufnahme und endlich Entfallen des bei Dampflokomotiven am Ende der Diensttour zumeist erforderlichen Wendens.</p><lb/>
          <p>Außer den erwähnten Vorteilen hat die elektrische Lokomotive gegenüber der Dampflokomotive auch noch andere Vorteile, die aber mehr mit dem allgemeinen Vorteile der elektrischen Traktion als solcher zusammenhängen, so die billigere Krafterzeugung, die Möglichkeit der Rückgewinnung der Energie in Gefällen, die Rauchfreiheit, die insbesondere bei Tunnelbetrieb von großem Wert ist, u. s. w.</p><lb/>
          <p>In der Tab. 1 (Seite 239) sind zum Vergleiche die Leistungen, Abmessungen und Gewichte einiger Dampf- und elektrischen Lokomotiven der italienischen Staatsbahnen zusammengestellt.</p><lb/>
          <p><hi rendition="#g">Was die Stromsysteme für elektrische Lokomotiven anbelangt</hi>, so haben (von einzelnen Ausnahmen abgesehen) bisher die Systeme mit Gleichstrom, einphasigem Wechselstrom und dreiphasigem Wechselstrom (Drehstrom) größere Verbreitung gefunden.</p><lb/>
          <p rendition="#c"><hi rendition="#g">Lokomotivbauarten</hi>.</p><lb/>
          <p>Beim Bau elektrischer Lokomotiven sind vor allem folgende zwei Gesichtspunkte maßgebend.</p><lb/>
          <p>1. Die die Antriebskraft liefernden Elektromotoren müssen mit dem Laufwerk in geeigneter Weise in Verbindung gebracht werden.</p><lb/>
          <p>2. Die Lokomotive muß entsprechend der Beschaffenheit der Bahnlinie und der verlangten Fahrgeschwindigkeit mit einem geeigneten Laufwerk versehen werden.</p><lb/>
          <p>Der treibende Elektromotor arbeitet bei allen in Frage kommenden Systemen um so günstiger und kann mit umso kleineren Dimensionen hergestellt werden, je größer die Umlaufgeschwindigkeit des Motors ist. Demgegenüber ist die Umlaufzahl der Triebräder einerseits durch die Fahrgeschwindigkeit der Lokomotive, anderseits aber durch den praktisch anwendbaren Raddurchmesser gegeben.</p><lb/>
          <p>Die Entwicklung der stationären Elektromotoren geschah mit einer verhältnismäßig hohen Umlaufgeschwindigkeit. Für Traktionszwecke wurde der Elektromotor mit beschränkter Leistungsfähigkeit zuerst im Straßenbahnbetrieb angewendet. Die erste praktisch ausgebildete Triebart, die auch bei Lokomotiven verwendet wurde, war die mit Zahnradübersetzung.</p><lb/>
          <p>Die allgemeine Lösung besteht darin, daß der Elektromotor mit einfacher Zahnradübersetzung die Triebachsen der Lokomotive antreibt. Die Zahnräder selbst sind in einem abgedichteten Schutzkasten untergebracht; der Motor stützt sich einerseits mit zwei Lagern, die mit dem Motorgehäuse konstruktiv zusammenhängen auf die Laufachse, anderseits wird er aber durch die Zwischenschaltung von Federn elastisch aufgehängt. Die elastische Aufhängung geschieht in den meisten Fällen in der Weise, daß die an der Seite des Motorgehäuses angebrachten Nasen sich auf Spiralfedern stützen. Es haben sich zwar für die Aufhängung der Motoren vielerlei andere Bauarten (so z. B. wo das Motorgehäuse im Schwerpunkte unterstützt worden ist) entwickelt, die jedoch keine allgemeine Verbreitung gefunden haben.</p><lb/>
          <p>Da bei der Lösung mit einfacher Zahnradübersetzung der Motor und die Zahnräder zwischen den Triebrädern angeordnet werden müssen, sind die Dimensionen des Motors in der Breite durch die Spurweite gegeben, wodurch auch ihre Leistungsfähigkeit begrenzt ist. Dementsprechend mußten bei größeren Lokomotiven mit Zahnradantrieb mindestens ebensoviel Motoren angewendet werden als Laufachsen vorhanden waren. In manchen Fällen, wo eine sehr hohe Lokomotivleistung verlangt wird, so z. B. bei den neuesten Einphasen-Lokomotiven der New York-New Haven and Hartford-Bahn, wurden sogar Lösungen angewendet, bei denen die einzelnen Lokomotivachsen durch je zwei Motoren angetrieben werden.</p><lb/>
          <p>Die Verteilung der notwendigen Lokomotivleistung in mehrere kleinere Einheiten ist an und für sich ein Nachteil. Bei großen Lokomotivleistungen entfallen auf die einzelnen Motoren selbst ziemlich große Leistungen, bei denen überdies die Anwendung des Zahnradantriebes Bedenken verursacht, umsomehr, als der Platz für die Zahnräder von dem dem Motor zur Verfügung stehenden Raum abgespart werden muß, und dementsprechend ihre mögliche Breite beschränkt wird. Zahnräder mit hoher Zahngeschwindigkeit, verhältnismäßig kleiner Breite und großer Leistung, sind wegen ihrer schnellen Abnutzung und beschränkten Betriebssicherheit kein erwünschter Bestandteil einer Vollbahnlokomotive.</p><lb/>
          <p>Es ist aus diesen Gründen das Bestreben, bei elektrischen Lokomotiven die Zahnradübersetzung zu vermeiden, beinahe ebenso alt wie die elektrische Lokomotive selbst. Die nächstliegende Lösung bestand in <hi rendition="#g">direkt auf der Triebachse</hi> der Lokomotive angebrachten Elektromotoren für geringe Tourenzahl.
</p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[240/0250] raschere Beschleunigung, schnellere Bewegungsfähigkeit auf den Endstationen und beim Verschub, kleinere Erhaltungskosten und dementsprechend geringerer Zeitverlust in den Reparaturwerkstätten, schnellere Behandlung in den Remisen, Wegfall der Reinigung des Kessels, keine Wasser- und Kohlenaufnahme und endlich Entfallen des bei Dampflokomotiven am Ende der Diensttour zumeist erforderlichen Wendens. Außer den erwähnten Vorteilen hat die elektrische Lokomotive gegenüber der Dampflokomotive auch noch andere Vorteile, die aber mehr mit dem allgemeinen Vorteile der elektrischen Traktion als solcher zusammenhängen, so die billigere Krafterzeugung, die Möglichkeit der Rückgewinnung der Energie in Gefällen, die Rauchfreiheit, die insbesondere bei Tunnelbetrieb von großem Wert ist, u. s. w. In der Tab. 1 (Seite 239) sind zum Vergleiche die Leistungen, Abmessungen und Gewichte einiger Dampf- und elektrischen Lokomotiven der italienischen Staatsbahnen zusammengestellt. Was die Stromsysteme für elektrische Lokomotiven anbelangt, so haben (von einzelnen Ausnahmen abgesehen) bisher die Systeme mit Gleichstrom, einphasigem Wechselstrom und dreiphasigem Wechselstrom (Drehstrom) größere Verbreitung gefunden. Lokomotivbauarten. Beim Bau elektrischer Lokomotiven sind vor allem folgende zwei Gesichtspunkte maßgebend. 1. Die die Antriebskraft liefernden Elektromotoren müssen mit dem Laufwerk in geeigneter Weise in Verbindung gebracht werden. 2. Die Lokomotive muß entsprechend der Beschaffenheit der Bahnlinie und der verlangten Fahrgeschwindigkeit mit einem geeigneten Laufwerk versehen werden. Der treibende Elektromotor arbeitet bei allen in Frage kommenden Systemen um so günstiger und kann mit umso kleineren Dimensionen hergestellt werden, je größer die Umlaufgeschwindigkeit des Motors ist. Demgegenüber ist die Umlaufzahl der Triebräder einerseits durch die Fahrgeschwindigkeit der Lokomotive, anderseits aber durch den praktisch anwendbaren Raddurchmesser gegeben. Die Entwicklung der stationären Elektromotoren geschah mit einer verhältnismäßig hohen Umlaufgeschwindigkeit. Für Traktionszwecke wurde der Elektromotor mit beschränkter Leistungsfähigkeit zuerst im Straßenbahnbetrieb angewendet. Die erste praktisch ausgebildete Triebart, die auch bei Lokomotiven verwendet wurde, war die mit Zahnradübersetzung. Die allgemeine Lösung besteht darin, daß der Elektromotor mit einfacher Zahnradübersetzung die Triebachsen der Lokomotive antreibt. Die Zahnräder selbst sind in einem abgedichteten Schutzkasten untergebracht; der Motor stützt sich einerseits mit zwei Lagern, die mit dem Motorgehäuse konstruktiv zusammenhängen auf die Laufachse, anderseits wird er aber durch die Zwischenschaltung von Federn elastisch aufgehängt. Die elastische Aufhängung geschieht in den meisten Fällen in der Weise, daß die an der Seite des Motorgehäuses angebrachten Nasen sich auf Spiralfedern stützen. Es haben sich zwar für die Aufhängung der Motoren vielerlei andere Bauarten (so z. B. wo das Motorgehäuse im Schwerpunkte unterstützt worden ist) entwickelt, die jedoch keine allgemeine Verbreitung gefunden haben. Da bei der Lösung mit einfacher Zahnradübersetzung der Motor und die Zahnräder zwischen den Triebrädern angeordnet werden müssen, sind die Dimensionen des Motors in der Breite durch die Spurweite gegeben, wodurch auch ihre Leistungsfähigkeit begrenzt ist. Dementsprechend mußten bei größeren Lokomotiven mit Zahnradantrieb mindestens ebensoviel Motoren angewendet werden als Laufachsen vorhanden waren. In manchen Fällen, wo eine sehr hohe Lokomotivleistung verlangt wird, so z. B. bei den neuesten Einphasen-Lokomotiven der New York-New Haven and Hartford-Bahn, wurden sogar Lösungen angewendet, bei denen die einzelnen Lokomotivachsen durch je zwei Motoren angetrieben werden. Die Verteilung der notwendigen Lokomotivleistung in mehrere kleinere Einheiten ist an und für sich ein Nachteil. Bei großen Lokomotivleistungen entfallen auf die einzelnen Motoren selbst ziemlich große Leistungen, bei denen überdies die Anwendung des Zahnradantriebes Bedenken verursacht, umsomehr, als der Platz für die Zahnräder von dem dem Motor zur Verfügung stehenden Raum abgespart werden muß, und dementsprechend ihre mögliche Breite beschränkt wird. Zahnräder mit hoher Zahngeschwindigkeit, verhältnismäßig kleiner Breite und großer Leistung, sind wegen ihrer schnellen Abnutzung und beschränkten Betriebssicherheit kein erwünschter Bestandteil einer Vollbahnlokomotive. Es ist aus diesen Gründen das Bestreben, bei elektrischen Lokomotiven die Zahnradübersetzung zu vermeiden, beinahe ebenso alt wie die elektrische Lokomotive selbst. Die nächstliegende Lösung bestand in direkt auf der Triebachse der Lokomotive angebrachten Elektromotoren für geringe Tourenzahl.

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen …

zeno.org – Contumax GmbH & Co. KG: Bereitstellung der Texttranskription. (2020-06-17T17:32:48Z) Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme des Werkes in das DTA entsprechen muss.
Andreas Nolda: Bearbeitung der digitalen Edition. (2020-06-17T17:32:48Z)

Weitere Informationen:

Bogensignaturen: nicht übernommen; Druckfehler: keine Angabe; fremdsprachliches Material: keine Angabe; Geminations-/Abkürzungsstriche: keine Angabe; Hervorhebungen (Antiqua, Sperrschrift, Kursive etc.): gekennzeichnet; Hervorhebungen I/J in Fraktur: keine Angabe; i/j in Fraktur: keine Angabe; Kolumnentitel: nicht übernommen; Kustoden: keine Angabe; langes s (ſ): keine Angabe; Normalisierungen: keine Angabe; rundes r (ꝛ): keine Angabe; Seitenumbrüche markiert: ja; Silbentrennung: aufgelöst; u/v bzw. U/V: keine Angabe; Vokale mit übergest. e: keine Angabe; Vollständigkeit: keine Angabe; Zeichensetzung: keine Angabe; Zeilenumbrüche markiert: nein

Spaltenumbrüche sind nicht markiert. Wiederholungszeichen (") wurden aufgelöst. Komplexe Formeln und Tabellen sind als Grafiken wiedergegeben.

Die Abbildungen im Text stammen von zeno.org – Contumax GmbH & Co. KG.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913
URL zu dieser Seite: https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913/250
Zitationshilfe: Röll, [Victor] von (Hrsg.): Enzyklopädie des Eisenbahnwesens. 2. Aufl. Bd. 4. Berlin, Wien, 1913, S. 240. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/roell_eisenbahnwesen04_1913/250>, abgerufen am 27.11.2024.