Müller-Breslau, Heinrich: Die neueren Methoden der Festigkeitslehre und der Statik der Baukonstruktionen. Leipzig, 1886.Stäben 4, 5, 6, 5', 4' wirksamen Spannkräfte S' ab, und die Längen [Abbildung]
Fig. 33 Aus der Spann-b. kraft 1 findet man die Kräfte 9 und 10, hier- auf 11 und 12 u. s. w. Für die Stäbe 7, 8, 8' und 7' ist S' = 0.*) Nach Zeich- Bedeutet nun d' die unter P gemessene Ordinate des Polygons Dividirt man also die Ordinaten d'1, d'2 .... des Biegungs- Wird beispielsweise durch den Träger ein Eisenbahngleis gestützt, *) Die Stäbe 1, 2, 3, 3', 2', 1', 9, 12, 13, 16, 17, 20, 17', 16', 13', 12', 9'
werden gezogen, die übrigen gedrückt. Stäben 4, 5, 6, 5′, 4′ wirksamen Spannkräfte S' ab, und die Längen [Abbildung]
Fig. 33 Aus der Spann-b. kraft 1 findet man die Kräfte 9 und 10, hier- auf 11 und 12 u. s. w. Für die Stäbe 7, 8, 8′ und 7′ ist S' = 0.*) Nach Zeich- Bedeutet nun δ' die unter P gemessene Ordinate des Polygons Dividirt man also die Ordinaten δ'1, δ'2 .... des Biegungs- Wird beispielsweise durch den Träger ein Eisenbahngleis gestützt, *) Die Stäbe 1, 2, 3, 3′, 2′, 1′, 9, 12, 13, 16, 17, 20, 17′, 16′, 13′, 12′, 9′
werden gezogen, die übrigen gedrückt. <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0049" n="37"/> Stäben 4, 5, 6, 5′, 4′ wirksamen Spannkräfte <hi rendition="#i">S'</hi> ab, und die Längen<lb/> der Strahlen 1, 2, ..... 1′ stellen die Spannkräfte <hi rendition="#i">S'</hi> in den Bogen-<lb/> gliedern vor.<lb/><figure><head>Fig. 33 </head><p>b.</p></figure><lb/> Aus der Spann-<lb/> kraft 1 findet<lb/> man die Kräfte<lb/> 9 und 10, hier-<lb/> auf 11 und 12<lb/> u. s. w. Für<lb/> die Stäbe 7, 8,<lb/> 8′ und 7′ ist<lb/><hi rendition="#i">S'</hi> = 0.<note place="foot" n="*)">Die Stäbe 1, 2, 3, 3′, 2′, 1′, 9, 12, 13, 16, 17, 20, 17′, 16′, 13′, 12′, 9′<lb/> werden gezogen, die übrigen gedrückt.</note></p><lb/> <p>Nach Zeich-<lb/> nen dieses<lb/> Kräfteplanes werden die Spannungen <formula/> und die von den σ' ab-<lb/> hängigen Aenderungen Δ' ϑ der den unteren Knotenpunkten (1), (2),<lb/> (3) … (6) entsprechenden Randwinkel ϑ berechnet, letztere nach der<lb/> im § 5 gegebenen Anleitung, und hierauf kann das zugehörige Biegungs-<lb/> polygon <hi rendition="#i">A' C B'</hi> der Gurtung <hi rendition="#i">A B</hi> ermittelt werden; dasselbe stimmt,<lb/> nach § 5, Gleich. 11, mit dem Momentenpolygone eines einfachen Balkens<lb/><hi rendition="#i">A' B'</hi> überein, welcher durch die senkrechten Lasten<lb/><hi rendition="#c"><hi rendition="#i">w</hi><hi rendition="#sub">1</hi> = — Δ' ϑ<hi rendition="#sub">1</hi>, <hi rendition="#i">w</hi><hi rendition="#sub">2</hi> = — Δ' ϑ<hi rendition="#sub">2</hi> ......</hi><lb/> beansprucht wird.</p><lb/> <p>Bedeutet nun δ' die unter <hi rendition="#i">P</hi> gemessene Ordinate des Polygons<lb/><hi rendition="#i">A' C B'</hi>, so ist nach dem vorhin bewiesenen Satze:<lb/><hi rendition="#c">Σ <hi rendition="#i">S</hi><hi rendition="#sub">0</hi> <hi rendition="#i">S'</hi> ρ = <hi rendition="#i">P</hi>δ',</hi><lb/> mithin<lb/><hi rendition="#c"><formula/>.</hi></p><lb/> <p><hi rendition="#g">Dividirt man also die Ordinaten δ'<hi rendition="#sub">1</hi>, δ'<hi rendition="#sub">2</hi> .... des Biegungs-<lb/> polygones <hi rendition="#i">A' C B'</hi> durch den konstanten Werth <formula/>, so erhält<lb/> man die Ordinaten <hi rendition="#i">X</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">X</hi><hi rendition="#sub">2</hi> .... der gesuchten Einflusslinie</hi>.</p><lb/> <p>Wird beispielsweise durch den Träger ein Eisenbahngleis gestützt,<lb/> und bedeutet <hi rendition="#i">L</hi> die Belastung einer Lokomotivachse, <hi rendition="#i">T</hi> die Belastung<lb/> einer Tenderachse, und entsprechen den Lasten <hi rendition="#i">L</hi> und <hi rendition="#i">T</hi> beziehungs-<lb/> weise die Polygon-Ordinaten η<hi rendition="#sub">1</hi>, η<hi rendition="#sub">2</hi> …, so ist der durch die Belastung<lb/> in Fig. 33 c erzeugte Werth <hi rendition="#i">X'</hi> bestimmt durch die Gleichung<lb/><hi rendition="#c"><formula/> = — <hi rendition="#i">L</hi> (η<hi rendition="#sub">1</hi> + η<hi rendition="#sub">2</hi> + η<hi rendition="#sub">3</hi>) — <hi rendition="#i">T</hi> (η<hi rendition="#sub">4</hi> + η<hi rendition="#sub">5</hi> + η<hi rendition="#sub">6</hi>).</hi></p><lb/> </div> </div> </body> </text> </TEI> [37/0049]
Stäben 4, 5, 6, 5′, 4′ wirksamen Spannkräfte S' ab, und die Längen
der Strahlen 1, 2, ..... 1′ stellen die Spannkräfte S' in den Bogen-
gliedern vor.
[Abbildung Fig. 33 b.]
Aus der Spann-
kraft 1 findet
man die Kräfte
9 und 10, hier-
auf 11 und 12
u. s. w. Für
die Stäbe 7, 8,
8′ und 7′ ist
S' = 0. *)
Nach Zeich-
nen dieses
Kräfteplanes werden die Spannungen [FORMEL] und die von den σ' ab-
hängigen Aenderungen Δ' ϑ der den unteren Knotenpunkten (1), (2),
(3) … (6) entsprechenden Randwinkel ϑ berechnet, letztere nach der
im § 5 gegebenen Anleitung, und hierauf kann das zugehörige Biegungs-
polygon A' C B' der Gurtung A B ermittelt werden; dasselbe stimmt,
nach § 5, Gleich. 11, mit dem Momentenpolygone eines einfachen Balkens
A' B' überein, welcher durch die senkrechten Lasten
w1 = — Δ' ϑ1, w2 = — Δ' ϑ2 ......
beansprucht wird.
Bedeutet nun δ' die unter P gemessene Ordinate des Polygons
A' C B', so ist nach dem vorhin bewiesenen Satze:
Σ S0 S' ρ = Pδ',
mithin
[FORMEL].
Dividirt man also die Ordinaten δ'1, δ'2 .... des Biegungs-
polygones A' C B' durch den konstanten Werth [FORMEL], so erhält
man die Ordinaten X1, X2 .... der gesuchten Einflusslinie.
Wird beispielsweise durch den Träger ein Eisenbahngleis gestützt,
und bedeutet L die Belastung einer Lokomotivachse, T die Belastung
einer Tenderachse, und entsprechen den Lasten L und T beziehungs-
weise die Polygon-Ordinaten η1, η2 …, so ist der durch die Belastung
in Fig. 33 c erzeugte Werth X' bestimmt durch die Gleichung
[FORMEL] = — L (η1 + η2 + η3) — T (η4 + η5 + η6).
*) Die Stäbe 1, 2, 3, 3′, 2′, 1′, 9, 12, 13, 16, 17, 20, 17′, 16′, 13′, 12′, 9′
werden gezogen, die übrigen gedrückt.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |