Mach, Ernst: Die Mechanik in ihrer Entwicklung. Leipzig, 1883.Die weitere Verwendung der Principien u. s. w. schreitenden Bewegung. Die Bewegung eines elastischenKörpers könnte in diesem Falle als wurmförmig bezeichnet werden. Bei harten Körpern wird aber die Zahl der Schwingungen so gross und deren Excursion so klein, dass sie unbemerkt bleiben, und von denselben abge- sehen werden kann. Die schwingende Bewegung ver- schwindet auch, entweder allmählich durch den Einfluss eines Widerstandes, oder wenn die beiden Massen, in dem Augenblicke als die Kraft f zu wirken beginnt, die Entfernung und gleiche Anfangsgeschwin- digkeiten haben. Die Entfernung , welche die Massen nach dem Verschwinden der Schwingung haben, ist um grösser als die Gleichgewichtsentfernung a. Es tritt nämlich durch die Wirkung von f eine Dehnung y ein, durch welche die Beschleunigung der vorausgehen- den Masse auf die Hälfte reducirt wird, während jene der nachfolgenden auf denselben Werth ansteigt. Hier- bei ist nun nach unserer Voraussetzung [Formel 4] oder [Formel 5] . Wie man sieht, kann man die feinsten Ein- zelheiten eines derartigen Vorganges nach den New- ton'schen Principien ermitteln. Die Untersuchung wird mathematisch (aber nicht principiell) complicirter, wenn man sich einen Körper in viele kleine Theile getheilt denkt, welche durch Elasticität zusammenhängen. Auch hier kann man bei genügender Härte die Schwingungen ignoriren. Solche Körper, bei welchen wir die gegen- seitige Verschiebung der Theile absichtlich als ver- schwindend ansehen, nennen wir starre Körper. 4. Wir betrachten nun einen Fall, welcher das Schema Die weitere Verwendung der Principien u. s. w. schreitenden Bewegung. Die Bewegung eines elastischenKörpers könnte in diesem Falle als wurmförmig bezeichnet werden. Bei harten Körpern wird aber die Zahl der Schwingungen so gross und deren Excursion so klein, dass sie unbemerkt bleiben, und von denselben abge- sehen werden kann. Die schwingende Bewegung ver- schwindet auch, entweder allmählich durch den Einfluss eines Widerstandes, oder wenn die beiden Massen, in dem Augenblicke als die Kraft f zu wirken beginnt, die Entfernung und gleiche Anfangsgeschwin- digkeiten haben. Die Entfernung , welche die Massen nach dem Verschwinden der Schwingung haben, ist um grösser als die Gleichgewichtsentfernung a. Es tritt nämlich durch die Wirkung von f eine Dehnung y ein, durch welche die Beschleunigung der vorausgehen- den Masse auf die Hälfte reducirt wird, während jene der nachfolgenden auf denselben Werth ansteigt. Hier- bei ist nun nach unserer Voraussetzung [Formel 4] oder [Formel 5] . Wie man sieht, kann man die feinsten Ein- zelheiten eines derartigen Vorganges nach den New- ton’schen Principien ermitteln. Die Untersuchung wird mathematisch (aber nicht principiell) complicirter, wenn man sich einen Körper in viele kleine Theile getheilt denkt, welche durch Elasticität zusammenhängen. Auch hier kann man bei genügender Härte die Schwingungen ignoriren. Solche Körper, bei welchen wir die gegen- seitige Verschiebung der Theile absichtlich als ver- schwindend ansehen, nennen wir starre Körper. 4. Wir betrachten nun einen Fall, welcher das Schema <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0257" n="245"/><fw place="top" type="header">Die weitere Verwendung der Principien u. s. w.</fw><lb/> schreitenden Bewegung. Die Bewegung eines elastischen<lb/> Körpers könnte in diesem Falle als wurmförmig bezeichnet<lb/> werden. Bei harten Körpern wird aber die Zahl der<lb/> Schwingungen so gross und deren Excursion so klein,<lb/> dass sie unbemerkt bleiben, und von denselben abge-<lb/> sehen werden kann. Die schwingende Bewegung ver-<lb/> schwindet auch, entweder allmählich durch den Einfluss<lb/> eines Widerstandes, oder wenn die beiden Massen, in<lb/> dem Augenblicke als die Kraft <hi rendition="#i">f</hi> zu wirken beginnt,<lb/> die Entfernung <formula notation="TeX">a+\frac{f}{2p}</formula> und <hi rendition="#g">gleiche</hi> Anfangsgeschwin-<lb/> digkeiten haben. Die Entfernung <formula notation="TeX">a+\frac{f}{2p}</formula>, welche die<lb/> Massen nach dem Verschwinden der Schwingung haben,<lb/> ist um <formula notation="TeX">\frac {f}{2p}</formula> grösser als die Gleichgewichtsentfernung <hi rendition="#i">a</hi>.<lb/> Es tritt nämlich durch die Wirkung von <hi rendition="#i">f</hi> eine Dehnung <hi rendition="#i">y</hi><lb/> ein, durch welche die Beschleunigung der vorausgehen-<lb/> den Masse auf die Hälfte reducirt wird, während jene<lb/> der nachfolgenden auf denselben Werth ansteigt. Hier-<lb/> bei ist nun nach unserer Voraussetzung <formula/> oder<lb/><formula/>. Wie man sieht, kann man die feinsten Ein-<lb/> zelheiten eines derartigen Vorganges nach den New-<lb/> ton’schen Principien ermitteln. Die Untersuchung wird<lb/> mathematisch (aber nicht principiell) complicirter, wenn<lb/> man sich einen Körper in viele kleine Theile getheilt<lb/> denkt, welche durch Elasticität zusammenhängen. Auch<lb/> hier kann man bei genügender Härte die Schwingungen<lb/> ignoriren. Solche Körper, bei welchen wir die gegen-<lb/> seitige Verschiebung der Theile absichtlich als ver-<lb/> schwindend ansehen, nennen wir <hi rendition="#g">starre</hi> Körper.</p><lb/> <p>4. Wir betrachten nun einen Fall, welcher das <hi rendition="#g">Schema<lb/> eines Hebels</hi> vorstellt. Wir denken uns die Massen<lb/><hi rendition="#i">M, m</hi><hi rendition="#sub">1</hi>, <hi rendition="#i">m</hi><hi rendition="#sub">2</hi> in einem Dreieck angeordnet und mitein-<lb/> ander in elastischer Verbindung. Jede Veränderung<lb/></p> </div> </div> </body> </text> </TEI> [245/0257]
Die weitere Verwendung der Principien u. s. w.
schreitenden Bewegung. Die Bewegung eines elastischen
Körpers könnte in diesem Falle als wurmförmig bezeichnet
werden. Bei harten Körpern wird aber die Zahl der
Schwingungen so gross und deren Excursion so klein,
dass sie unbemerkt bleiben, und von denselben abge-
sehen werden kann. Die schwingende Bewegung ver-
schwindet auch, entweder allmählich durch den Einfluss
eines Widerstandes, oder wenn die beiden Massen, in
dem Augenblicke als die Kraft f zu wirken beginnt,
die Entfernung [FORMEL] und gleiche Anfangsgeschwin-
digkeiten haben. Die Entfernung [FORMEL], welche die
Massen nach dem Verschwinden der Schwingung haben,
ist um [FORMEL] grösser als die Gleichgewichtsentfernung a.
Es tritt nämlich durch die Wirkung von f eine Dehnung y
ein, durch welche die Beschleunigung der vorausgehen-
den Masse auf die Hälfte reducirt wird, während jene
der nachfolgenden auf denselben Werth ansteigt. Hier-
bei ist nun nach unserer Voraussetzung [FORMEL] oder
[FORMEL]. Wie man sieht, kann man die feinsten Ein-
zelheiten eines derartigen Vorganges nach den New-
ton’schen Principien ermitteln. Die Untersuchung wird
mathematisch (aber nicht principiell) complicirter, wenn
man sich einen Körper in viele kleine Theile getheilt
denkt, welche durch Elasticität zusammenhängen. Auch
hier kann man bei genügender Härte die Schwingungen
ignoriren. Solche Körper, bei welchen wir die gegen-
seitige Verschiebung der Theile absichtlich als ver-
schwindend ansehen, nennen wir starre Körper.
4. Wir betrachten nun einen Fall, welcher das Schema
eines Hebels vorstellt. Wir denken uns die Massen
M, m1, m2 in einem Dreieck angeordnet und mitein-
ander in elastischer Verbindung. Jede Veränderung
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |