Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Littrow, Joseph Johann von: Die Wunder des Himmels, oder gemeinfaßliche Darstellung des Weltsystems. Bd. 3. Stuttgart, 1836.

Bild:
<< vorherige Seite
Beschreibung und Gebrauch der astronom. Instrumente.

§. 62. (Wahrscheinlichkeit, wenn die Anzahl der möglichen
Fälle unbekannt ist.) Allein alle die bisher angeführten Wahr-
scheinlichkeiten setzen, wie man sieht, voraus, daß die Anzahl der
überhaupt möglichen Fälle bekannt ist. Es gibt aber in der
Natur eine Menge von Ereignissen ganz anderer Art, bei denen
diese Anzahl der möglichen Fälle völlig unbekannt ist, und diese
sind es vorzüglich, welche den Astronomen, den Physiker und
überhaupt alle Diejenigen interessiren, denen es darum zu thun ist,
die Gesetze, nach welchen die Natur verfährt, durch eigentliche
Beobachtungen, durch wiederholte Experimente näher kennen zu
lernen. Wenn man nämlich den Werth einer oder auch mehrerer
Größen, die man schon aus früheren Beobachtungen, wenigstens
beinahe, kennen gelernt hat, nun genauer bestimmen will, so bleibt
uns nichts übrig, als diese Beobachtungen mit aller uns mögli-
chen Umsicht anzustellen und sie, so viel es von uns abhängt,
zu vervielfältigen. Auf diese Weise wird man z. B. für die Pol-
höhe seines Ortes, oder für die Schiefe der Ecliptik oder für beide
zugleich eine sehr große Anzahl von Bestimmungen erhalten, die
unter sich sämmtlich, wenn auch nur wenig, verschieden und über-
dieß auch noch vielleicht von sehr ungleichem Werthe (Gewichte)
sind, und es wird sich nun darum handeln, aus allen diesen Be-
stimmungen diejenige herauszufinden, die der gesuchten Wahrheit
zunächst liegt. Man bemerkt ohne meine Erinnerung, daß diese
Untersuchungen einer ganz anderen Art sind, als alle vorher-
gehenden, und daß sie zugleich für die endliche Ausbildung aller
sogenannten Naturwissenschaften von der größten Wichtigkeit seyn
werden, da sie es eigentlich sind, die uns von den unvermeid-
lichen Fehlern unserer Sinne, deren wir bei allen unseren Beobach-
tungen und Experimenten ausgesetzt sind, unabhängig machen und
gleichsam den Menschen von der beschränkten Lage, in welche ihn
die Natur versetzt hat, befreien und ihn über sich selbst erheben,
ihn zu einem Wesen höherer Art machen sollten. Auch ist jene Gat-
tung der Wahrscheinlichkeitsrechnung, wo die Anzahl der über-
haupt möglichen Fälle gegeben ist, als die leichtere und einfachere
schon seit längerer Zeit von Pascal, Moivre, Huygens, Leibnitz,
Bernoulli u. A. ausgebildet worden, während die gegenwärtige
erst unseren Tagen angehört, indem wir das Vorzüglichste, was

Beſchreibung und Gebrauch der aſtronom. Inſtrumente.

§. 62. (Wahrſcheinlichkeit, wenn die Anzahl der möglichen
Fälle unbekannt iſt.) Allein alle die bisher angeführten Wahr-
ſcheinlichkeiten ſetzen, wie man ſieht, voraus, daß die Anzahl der
überhaupt möglichen Fälle bekannt iſt. Es gibt aber in der
Natur eine Menge von Ereigniſſen ganz anderer Art, bei denen
dieſe Anzahl der möglichen Fälle völlig unbekannt iſt, und dieſe
ſind es vorzüglich, welche den Aſtronomen, den Phyſiker und
überhaupt alle Diejenigen intereſſiren, denen es darum zu thun iſt,
die Geſetze, nach welchen die Natur verfährt, durch eigentliche
Beobachtungen, durch wiederholte Experimente näher kennen zu
lernen. Wenn man nämlich den Werth einer oder auch mehrerer
Größen, die man ſchon aus früheren Beobachtungen, wenigſtens
beinahe, kennen gelernt hat, nun genauer beſtimmen will, ſo bleibt
uns nichts übrig, als dieſe Beobachtungen mit aller uns mögli-
chen Umſicht anzuſtellen und ſie, ſo viel es von uns abhängt,
zu vervielfältigen. Auf dieſe Weiſe wird man z. B. für die Pol-
höhe ſeines Ortes, oder für die Schiefe der Ecliptik oder für beide
zugleich eine ſehr große Anzahl von Beſtimmungen erhalten, die
unter ſich ſämmtlich, wenn auch nur wenig, verſchieden und über-
dieß auch noch vielleicht von ſehr ungleichem Werthe (Gewichte)
ſind, und es wird ſich nun darum handeln, aus allen dieſen Be-
ſtimmungen diejenige herauszufinden, die der geſuchten Wahrheit
zunächſt liegt. Man bemerkt ohne meine Erinnerung, daß dieſe
Unterſuchungen einer ganz anderen Art ſind, als alle vorher-
gehenden, und daß ſie zugleich für die endliche Ausbildung aller
ſogenannten Naturwiſſenſchaften von der größten Wichtigkeit ſeyn
werden, da ſie es eigentlich ſind, die uns von den unvermeid-
lichen Fehlern unſerer Sinne, deren wir bei allen unſeren Beobach-
tungen und Experimenten ausgeſetzt ſind, unabhängig machen und
gleichſam den Menſchen von der beſchränkten Lage, in welche ihn
die Natur verſetzt hat, befreien und ihn über ſich ſelbſt erheben,
ihn zu einem Weſen höherer Art machen ſollten. Auch iſt jene Gat-
tung der Wahrſcheinlichkeitsrechnung, wo die Anzahl der über-
haupt möglichen Fälle gegeben iſt, als die leichtere und einfachere
ſchon ſeit längerer Zeit von Pascal, Moivre, Huygens, Leibnitz,
Bernoulli u. A. ausgebildet worden, während die gegenwärtige
erſt unſeren Tagen angehört, indem wir das Vorzüglichſte, was

<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <div n="3">
            <pb facs="#f0420" n="408"/>
            <fw place="top" type="header">Be&#x017F;chreibung und Gebrauch der a&#x017F;tronom. In&#x017F;trumente.</fw><lb/>
            <p>§. 62. (Wahr&#x017F;cheinlichkeit, wenn die Anzahl der möglichen<lb/>
Fälle unbekannt i&#x017F;t.) Allein alle die bisher angeführten Wahr-<lb/>
&#x017F;cheinlichkeiten &#x017F;etzen, wie man &#x017F;ieht, voraus, daß die Anzahl der<lb/>
überhaupt möglichen Fälle <hi rendition="#g">bekannt</hi> i&#x017F;t. Es gibt aber in der<lb/>
Natur eine Menge von Ereigni&#x017F;&#x017F;en ganz anderer Art, bei denen<lb/>
die&#x017F;e Anzahl der möglichen Fälle völlig unbekannt i&#x017F;t, und <hi rendition="#g">die&#x017F;e</hi><lb/>
&#x017F;ind es vorzüglich, welche den A&#x017F;tronomen, den Phy&#x017F;iker und<lb/>
überhaupt alle Diejenigen intere&#x017F;&#x017F;iren, denen es darum zu thun i&#x017F;t,<lb/>
die Ge&#x017F;etze, nach welchen die Natur verfährt, durch eigentliche<lb/>
Beobachtungen, durch wiederholte Experimente näher kennen zu<lb/>
lernen. Wenn man nämlich den Werth einer oder auch mehrerer<lb/>
Größen, die man &#x017F;chon aus früheren Beobachtungen, wenig&#x017F;tens<lb/>
beinahe, kennen gelernt hat, nun genauer be&#x017F;timmen will, &#x017F;o bleibt<lb/>
uns nichts übrig, als die&#x017F;e Beobachtungen mit aller uns mögli-<lb/>
chen Um&#x017F;icht anzu&#x017F;tellen und &#x017F;ie, &#x017F;o viel es von uns abhängt,<lb/>
zu vervielfältigen. Auf die&#x017F;e Wei&#x017F;e wird man z. B. für die Pol-<lb/>
höhe &#x017F;eines Ortes, oder für die Schiefe der Ecliptik oder für beide<lb/>
zugleich eine &#x017F;ehr große Anzahl von Be&#x017F;timmungen erhalten, die<lb/>
unter &#x017F;ich &#x017F;ämmtlich, wenn auch nur wenig, ver&#x017F;chieden und über-<lb/>
dieß auch noch vielleicht von &#x017F;ehr ungleichem Werthe (Gewichte)<lb/>
&#x017F;ind, und es wird &#x017F;ich nun darum handeln, aus allen die&#x017F;en Be-<lb/>
&#x017F;timmungen diejenige herauszufinden, die der ge&#x017F;uchten Wahrheit<lb/>
zunäch&#x017F;t liegt. Man bemerkt ohne meine Erinnerung, daß die&#x017F;e<lb/>
Unter&#x017F;uchungen einer ganz anderen Art &#x017F;ind, als alle vorher-<lb/>
gehenden, und daß &#x017F;ie zugleich für die endliche Ausbildung aller<lb/>
&#x017F;ogenannten Naturwi&#x017F;&#x017F;en&#x017F;chaften von der größten Wichtigkeit &#x017F;eyn<lb/>
werden, da <hi rendition="#g">&#x017F;ie</hi> es eigentlich &#x017F;ind, die uns von den unvermeid-<lb/>
lichen Fehlern un&#x017F;erer Sinne, deren wir bei allen un&#x017F;eren Beobach-<lb/>
tungen und Experimenten ausge&#x017F;etzt &#x017F;ind, unabhängig machen und<lb/>
gleich&#x017F;am den Men&#x017F;chen von der be&#x017F;chränkten Lage, in welche ihn<lb/>
die Natur ver&#x017F;etzt hat, befreien und ihn über &#x017F;ich &#x017F;elb&#x017F;t erheben,<lb/>
ihn zu einem We&#x017F;en höherer Art machen &#x017F;ollten. Auch i&#x017F;t jene Gat-<lb/>
tung der Wahr&#x017F;cheinlichkeitsrechnung, wo die Anzahl der über-<lb/>
haupt möglichen Fälle gegeben i&#x017F;t, als die leichtere und einfachere<lb/>
&#x017F;chon &#x017F;eit längerer Zeit von Pascal, Moivre, Huygens, Leibnitz,<lb/>
Bernoulli u. A. ausgebildet worden, während die gegenwärtige<lb/>
er&#x017F;t un&#x017F;eren Tagen angehört, indem wir das Vorzüglich&#x017F;te, was<lb/></p>
          </div>
        </div>
      </div>
    </body>
  </text>
</TEI>
[408/0420] Beſchreibung und Gebrauch der aſtronom. Inſtrumente. §. 62. (Wahrſcheinlichkeit, wenn die Anzahl der möglichen Fälle unbekannt iſt.) Allein alle die bisher angeführten Wahr- ſcheinlichkeiten ſetzen, wie man ſieht, voraus, daß die Anzahl der überhaupt möglichen Fälle bekannt iſt. Es gibt aber in der Natur eine Menge von Ereigniſſen ganz anderer Art, bei denen dieſe Anzahl der möglichen Fälle völlig unbekannt iſt, und dieſe ſind es vorzüglich, welche den Aſtronomen, den Phyſiker und überhaupt alle Diejenigen intereſſiren, denen es darum zu thun iſt, die Geſetze, nach welchen die Natur verfährt, durch eigentliche Beobachtungen, durch wiederholte Experimente näher kennen zu lernen. Wenn man nämlich den Werth einer oder auch mehrerer Größen, die man ſchon aus früheren Beobachtungen, wenigſtens beinahe, kennen gelernt hat, nun genauer beſtimmen will, ſo bleibt uns nichts übrig, als dieſe Beobachtungen mit aller uns mögli- chen Umſicht anzuſtellen und ſie, ſo viel es von uns abhängt, zu vervielfältigen. Auf dieſe Weiſe wird man z. B. für die Pol- höhe ſeines Ortes, oder für die Schiefe der Ecliptik oder für beide zugleich eine ſehr große Anzahl von Beſtimmungen erhalten, die unter ſich ſämmtlich, wenn auch nur wenig, verſchieden und über- dieß auch noch vielleicht von ſehr ungleichem Werthe (Gewichte) ſind, und es wird ſich nun darum handeln, aus allen dieſen Be- ſtimmungen diejenige herauszufinden, die der geſuchten Wahrheit zunächſt liegt. Man bemerkt ohne meine Erinnerung, daß dieſe Unterſuchungen einer ganz anderen Art ſind, als alle vorher- gehenden, und daß ſie zugleich für die endliche Ausbildung aller ſogenannten Naturwiſſenſchaften von der größten Wichtigkeit ſeyn werden, da ſie es eigentlich ſind, die uns von den unvermeid- lichen Fehlern unſerer Sinne, deren wir bei allen unſeren Beobach- tungen und Experimenten ausgeſetzt ſind, unabhängig machen und gleichſam den Menſchen von der beſchränkten Lage, in welche ihn die Natur verſetzt hat, befreien und ihn über ſich ſelbſt erheben, ihn zu einem Weſen höherer Art machen ſollten. Auch iſt jene Gat- tung der Wahrſcheinlichkeitsrechnung, wo die Anzahl der über- haupt möglichen Fälle gegeben iſt, als die leichtere und einfachere ſchon ſeit längerer Zeit von Pascal, Moivre, Huygens, Leibnitz, Bernoulli u. A. ausgebildet worden, während die gegenwärtige erſt unſeren Tagen angehört, indem wir das Vorzüglichſte, was

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/littrow_weltsystem03_1836
URL zu dieser Seite: https://www.deutschestextarchiv.de/littrow_weltsystem03_1836/420
Zitationshilfe: Littrow, Joseph Johann von: Die Wunder des Himmels, oder gemeinfaßliche Darstellung des Weltsystems. Bd. 3. Stuttgart, 1836, S. 408. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/littrow_weltsystem03_1836/420>, abgerufen am 18.12.2024.