Lambert, Johann Heinrich: Anlage zur Architectonic. Bd. 1. Riga, 1771.Das Etwas seyn und das Nichts seyn. III°. Remotive Sätze. 9°. Was weder A noch Nicht - A ist, ist Nichts. Dieser Satz geht bey allgemeinen Dingen nicht schlechthin an. Man muß vorerst beweisen, daß sie entweder A oder Nicht - A seyn müssen, so allgemein sie sind, und dieser Beweis mag nur angehen, wenn A eine noch allgemeinere Bestimmung ist. Jn Ansehung der specialern und individualen Bestimmungen aber wird der Satz in folgenden verwandelt. Was weder A noch Nicht - A werden kann, ist Nichts. 10°. Was nicht Nichts ist, ist nicht weder A noch Nicht - A. Nun ist ein allgemeines Ding eben nicht durchaus Etwas, (§. 262. N°. 12.). So fern es aber Etwas ist, gilt der Satz. Hingegen, so fern ein Leeres oder eine Lü- cke darinn gelassen ist, welche erst mit A oder mit Nicht - A ausgefüllet werden muß, und mit beydem, aber nicht zugleich in einem Indiuiduo, ausgefüllet werden kann, kann man allerdings sagen, daß es weder A noch Nicht - A sey. (N°. 3. und §. 257.). 11°. Nichts ist weder A noch Nicht - A. Stellet man sich in diesem Satze das Nichts, als ein gedichtetes Indiuiduum vor (§. 262. N°. 12.), so geht der Satz ohnehin nicht auf all- gemeine Dinge. Da aber Nichts, zuweilen auch nur privative, so viel als kein mögliches Ding bedeutet, so können die allgemeinen Din- ge, so fern sie gedenkbar sind, auch in dem Sa- tze begriffen werden. Da sie aber ein Leeres ha- ben, so sind sie in Absicht, auf die Bestimmun- gen, Q 5
Das Etwas ſeyn und das Nichts ſeyn. III°. Remotive Saͤtze. 9°. Was weder A noch Nicht ‒ A iſt, iſt Nichts. Dieſer Satz geht bey allgemeinen Dingen nicht ſchlechthin an. Man muß vorerſt beweiſen, daß ſie entweder A oder Nicht ‒ A ſeyn muͤſſen, ſo allgemein ſie ſind, und dieſer Beweis mag nur angehen, wenn A eine noch allgemeinere Beſtimmung iſt. Jn Anſehung der ſpecialern und individualen Beſtimmungen aber wird der Satz in folgenden verwandelt. Was weder A noch Nicht ‒ A werden kann, iſt Nichts. 10°. Was nicht Nichts iſt, iſt nicht weder A noch Nicht ‒ A. Nun iſt ein allgemeines Ding eben nicht durchaus Etwas, (§. 262. N°. 12.). So fern es aber Etwas iſt, gilt der Satz. Hingegen, ſo fern ein Leeres oder eine Luͤ- cke darinn gelaſſen iſt, welche erſt mit A oder mit Nicht ‒ A ausgefuͤllet werden muß, und mit beydem, aber nicht zugleich in einem Indiuiduo, ausgefuͤllet werden kann, kann man allerdings ſagen, daß es weder A noch Nicht ‒ A ſey. (N°. 3. und §. 257.). 11°. Nichts iſt weder A noch Nicht ‒ A. Stellet man ſich in dieſem Satze das Nichts, als ein gedichtetes Indiuiduum vor (§. 262. N°. 12.), ſo geht der Satz ohnehin nicht auf all- gemeine Dinge. Da aber Nichts, zuweilen auch nur privative, ſo viel als kein moͤgliches Ding bedeutet, ſo koͤnnen die allgemeinen Din- ge, ſo fern ſie gedenkbar ſind, auch in dem Sa- tze begriffen werden. Da ſie aber ein Leeres ha- ben, ſo ſind ſie in Abſicht, auf die Beſtimmun- gen, Q 5
<TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <pb facs="#f0285" n="249"/> <fw place="top" type="header"> <hi rendition="#b">Das Etwas ſeyn und das Nichts ſeyn.</hi> </fw><lb/> <list> <item> <hi rendition="#c"> <hi rendition="#aq">III°.</hi> <hi rendition="#fr">Remotive Saͤtze.</hi> </hi> </item><lb/> <item>9°. <hi rendition="#fr">Was weder</hi> <hi rendition="#aq"><hi rendition="#i">A</hi></hi> <hi rendition="#fr">noch Nicht</hi> ‒ <hi rendition="#aq"><hi rendition="#i">A</hi></hi> <hi rendition="#fr">iſt, iſt<lb/> Nichts.</hi> Dieſer Satz geht bey allgemeinen<lb/> Dingen nicht ſchlechthin an. Man muß vorerſt<lb/> beweiſen, daß ſie entweder <hi rendition="#aq"><hi rendition="#i">A</hi></hi> oder <hi rendition="#fr">Nicht</hi> ‒ <hi rendition="#aq"><hi rendition="#i">A</hi></hi><lb/> ſeyn muͤſſen, ſo allgemein ſie ſind, und dieſer<lb/> Beweis mag nur angehen, wenn <hi rendition="#aq">A</hi> eine noch<lb/> allgemeinere Beſtimmung iſt. Jn Anſehung<lb/> der ſpecialern und individualen Beſtimmungen<lb/> aber wird der Satz in folgenden verwandelt.<lb/><hi rendition="#fr">Was weder</hi> <hi rendition="#aq"><hi rendition="#i">A</hi></hi> <hi rendition="#fr">noch Nicht</hi> ‒ <hi rendition="#aq"><hi rendition="#i">A</hi></hi> <hi rendition="#fr">werden<lb/> kann, iſt Nichts.</hi></item><lb/> <item>10°. <hi rendition="#fr">Was nicht Nichts iſt, iſt nicht weder</hi> <hi rendition="#aq"><hi rendition="#i">A</hi></hi><lb/><hi rendition="#fr">noch Nicht</hi> ‒ <hi rendition="#aq"><hi rendition="#i">A.</hi></hi> Nun iſt ein allgemeines<lb/> Ding eben nicht durchaus <hi rendition="#fr">Etwas,</hi> (§. 262.<lb/><hi rendition="#aq">N°.</hi> 12.). So fern es aber Etwas iſt, gilt der<lb/> Satz. Hingegen, ſo fern ein Leeres oder eine Luͤ-<lb/> cke darinn gelaſſen iſt, welche erſt mit <hi rendition="#aq"><hi rendition="#i">A</hi></hi> oder mit<lb/><hi rendition="#fr">Nicht</hi> ‒ <hi rendition="#aq"><hi rendition="#i">A</hi></hi> ausgefuͤllet werden muß, und mit<lb/> beydem, aber nicht zugleich in einem <hi rendition="#aq">Indiuiduo,</hi><lb/> ausgefuͤllet werden kann, kann man allerdings<lb/> ſagen, daß es weder <hi rendition="#aq"><hi rendition="#i">A</hi></hi> noch Nicht ‒ <hi rendition="#aq">A</hi> ſey.<lb/> (<hi rendition="#aq">N°.</hi> 3. und §. 257.).</item><lb/> <item>11°. <hi rendition="#fr">Nichts iſt weder</hi> <hi rendition="#aq"><hi rendition="#i">A</hi></hi> <hi rendition="#fr">noch Nicht</hi> ‒ <hi rendition="#aq"><hi rendition="#i">A.</hi></hi><lb/> Stellet man ſich in dieſem Satze das <hi rendition="#fr">Nichts,</hi><lb/> als ein gedichtetes <hi rendition="#aq">Indiuiduum</hi> vor (§. 262.<lb/><hi rendition="#aq">N°.</hi> 12.), ſo geht der Satz ohnehin nicht auf all-<lb/> gemeine Dinge. Da aber <hi rendition="#fr">Nichts,</hi> zuweilen<lb/> auch nur privative, ſo viel als <hi rendition="#fr">kein moͤgliches<lb/> Ding</hi> bedeutet, ſo koͤnnen die allgemeinen Din-<lb/> ge, ſo fern ſie gedenkbar ſind, auch in dem Sa-<lb/> tze begriffen werden. Da ſie aber ein Leeres ha-<lb/> ben, ſo ſind ſie in Abſicht, auf die Beſtimmun-<lb/> <fw place="bottom" type="sig">Q 5</fw><fw place="bottom" type="catch">gen,</fw><lb/></item> </list> </div> </div> </div> </body> </text> </TEI> [249/0285]
Das Etwas ſeyn und das Nichts ſeyn.
III°. Remotive Saͤtze.
9°. Was weder A noch Nicht ‒ A iſt, iſt
Nichts. Dieſer Satz geht bey allgemeinen
Dingen nicht ſchlechthin an. Man muß vorerſt
beweiſen, daß ſie entweder A oder Nicht ‒ A
ſeyn muͤſſen, ſo allgemein ſie ſind, und dieſer
Beweis mag nur angehen, wenn A eine noch
allgemeinere Beſtimmung iſt. Jn Anſehung
der ſpecialern und individualen Beſtimmungen
aber wird der Satz in folgenden verwandelt.
Was weder A noch Nicht ‒ A werden
kann, iſt Nichts.
10°. Was nicht Nichts iſt, iſt nicht weder A
noch Nicht ‒ A. Nun iſt ein allgemeines
Ding eben nicht durchaus Etwas, (§. 262.
N°. 12.). So fern es aber Etwas iſt, gilt der
Satz. Hingegen, ſo fern ein Leeres oder eine Luͤ-
cke darinn gelaſſen iſt, welche erſt mit A oder mit
Nicht ‒ A ausgefuͤllet werden muß, und mit
beydem, aber nicht zugleich in einem Indiuiduo,
ausgefuͤllet werden kann, kann man allerdings
ſagen, daß es weder A noch Nicht ‒ A ſey.
(N°. 3. und §. 257.).
11°. Nichts iſt weder A noch Nicht ‒ A.
Stellet man ſich in dieſem Satze das Nichts,
als ein gedichtetes Indiuiduum vor (§. 262.
N°. 12.), ſo geht der Satz ohnehin nicht auf all-
gemeine Dinge. Da aber Nichts, zuweilen
auch nur privative, ſo viel als kein moͤgliches
Ding bedeutet, ſo koͤnnen die allgemeinen Din-
ge, ſo fern ſie gedenkbar ſind, auch in dem Sa-
tze begriffen werden. Da ſie aber ein Leeres ha-
ben, ſo ſind ſie in Abſicht, auf die Beſtimmun-
gen,
Q 5
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/lambert_architectonic01_1771 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/lambert_architectonic01_1771/285 |
Zitationshilfe: | Lambert, Johann Heinrich: Anlage zur Architectonic. Bd. 1. Riga, 1771, S. 249. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/lambert_architectonic01_1771/285>, abgerufen am 16.02.2025. |