Klein, Felix: Über Riemann's Theorie der Algebraischen Functionen und ihrer Integrale. Leipzig, 1882.dass die umgekehrte Auffassung im Grunde ebenso berechtigt ist. Das Studium einförmiger Strömungen auf gegebenen Flächen kann umsomehr als Selbstzweck betrachtet werden, als es bei zahlreichen physikalischen Problemen unmittelbar zu Verwerthung gelangt. In der unendlichen Mannigfaltigkeit dieser Strömungen orientirt uns die Riemann'sche Theorie, indem sie auf den Zusammenhang hinweist, der zwischen diesen Strömungen und den algebraischen Functionen der Analysis statt hat. Wir können endlich den geometrischen Gesichtspunct hervorkehren, und die Riemann'sche Theorie als ein Mittel betrachten, um die Lehre von der conformen Abbildung geschlossener Flächen auf einander der analytischen Behandlung zugänglich zu machen. Eben diese Auffassung ist es, der ich im folgenden, dritten Abschnitte meiner Darstellung Ausdruck zu geben bemüht bin. Es wird nicht nöthig sein, schon an dieser Stelle ausführlicher hierauf einzugehen. §. 18. Weiterbildung der Theorie. In Riemann's eigenem Gedankengange, wie ich ihn vorstehend zu schildern versuchte, veranschaulicht die Riemann'sche Fläche nicht nur die in Betracht kommenden Functionen, sondern sie definirt dieselben. Es scheint möglich, diese beiden Dinge zu trennen: die Definition der Functionen von anderer Seite zu nehmen und die Fläche nur als Mittel der Veranschaulichung beizubehalten. Das ist es in der That, was von der Mehrzahl der Mathematiker um so lieber geschehen ist, als Riemann's Definition der Function bei genauerer Untersuchung beträchtliche Schwierigkeiten mit sich bringt. Man beginnt also etwa mit der algebraischen Gleichung und der Begriffsbestimmung des Integrals, und construirt erst hinterher eine zugehörige Riemann'sche Fläche. Dann aber ist von selbst eine grosse Verallgemeinerung der ursprünglichen Auffassung gegeben. Bislang galten uns zwei Flächen nur dann als gleichwerthig, wenn die eine aus der anderen durch eindeutige conforme Abbildung entstand. Jetzt ist kein Grund mehr, an der Conformität der Abbildung festzuhalten. Jede Fläche, welche durch stetige Abbildung eindeutig Vergl. die betreffenden Bemerkungen der Vorrede.
dass die umgekehrte Auffassung im Grunde ebenso berechtigt ist. Das Studium einförmiger Strömungen auf gegebenen Flächen kann umsomehr als Selbstzweck betrachtet werden, als es bei zahlreichen physikalischen Problemen unmittelbar zu Verwerthung gelangt. In der unendlichen Mannigfaltigkeit dieser Strömungen orientirt uns die Riemann'sche Theorie, indem sie auf den Zusammenhang hinweist, der zwischen diesen Strömungen und den algebraischen Functionen der Analysis statt hat. Wir können endlich den geometrischen Gesichtspunct hervorkehren, und die Riemann'sche Theorie als ein Mittel betrachten, um die Lehre von der conformen Abbildung geschlossener Flächen auf einander der analytischen Behandlung zugänglich zu machen. Eben diese Auffassung ist es, der ich im folgenden, dritten Abschnitte meiner Darstellung Ausdruck zu geben bemüht bin. Es wird nicht nöthig sein, schon an dieser Stelle ausführlicher hierauf einzugehen. §. 18. Weiterbildung der Theorie. In Riemann's eigenem Gedankengange, wie ich ihn vorstehend zu schildern versuchte, veranschaulicht die Riemann'sche Fläche nicht nur die in Betracht kommenden Functionen, sondern sie definirt dieselben. Es scheint möglich, diese beiden Dinge zu trennen: die Definition der Functionen von anderer Seite zu nehmen und die Fläche nur als Mittel der Veranschaulichung beizubehalten. Das ist es in der That, was von der Mehrzahl der Mathematiker um so lieber geschehen ist, als Riemann's Definition der Function bei genauerer Untersuchung beträchtliche Schwierigkeiten mit sich bringt. Man beginnt also etwa mit der algebraischen Gleichung und der Begriffsbestimmung des Integrals, und construirt erst hinterher eine zugehörige Riemann'sche Fläche. Dann aber ist von selbst eine grosse Verallgemeinerung der ursprünglichen Auffassung gegeben. Bislang galten uns zwei Flächen nur dann als gleichwerthig, wenn die eine aus der anderen durch eindeutige conforme Abbildung entstand. Jetzt ist kein Grund mehr, an der Conformität der Abbildung festzuhalten. Jede Fläche, welche durch stetige Abbildung eindeutig Vergl. die betreffenden Bemerkungen der Vorrede.
<TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0069" n="61"/> dass die umgekehrte Auffassung im Grunde ebenso berechtigt ist. Das Studium einförmiger Strömungen auf gegebenen Flächen kann umsomehr als Selbstzweck betrachtet werden, als es bei zahlreichen <hi rendition="#i">physikalischen</hi> Problemen unmittelbar zu Verwerthung gelangt. In der unendlichen Mannigfaltigkeit dieser Strömungen orientirt uns die Riemann'sche Theorie, indem sie auf den Zusammenhang hinweist, der zwischen diesen Strömungen und den algebraischen Functionen der Analysis statt hat.</p> <p>Wir können endlich den <hi rendition="#i">geometrischen</hi> Gesichtspunct hervorkehren, und die Riemann'sche Theorie als ein Mittel betrachten, um die Lehre von der conformen Abbildung geschlossener Flächen auf einander der analytischen Behandlung zugänglich zu machen. Eben diese Auffassung ist es, der ich im folgenden, dritten Abschnitte meiner Darstellung Ausdruck zu geben bemüht bin. Es wird nicht nöthig sein, schon an dieser Stelle ausführlicher hierauf einzugehen.</p> </div> <div> <head>§. 18. Weiterbildung der Theorie.</head><lb/> <p>In Riemann's eigenem Gedankengange, wie ich ihn vorstehend zu schildern versuchte, veranschaulicht die Riemann'sche Fläche nicht nur die in Betracht kommenden Functionen, sondern sie <hi rendition="#i">definirt</hi> dieselben. Es scheint möglich, diese beiden Dinge zu trennen: die Definition der Functionen von anderer Seite zu nehmen und die Fläche nur als Mittel der Veranschaulichung beizubehalten. Das ist es in der That, was von der Mehrzahl der Mathematiker um so lieber geschehen ist, als Riemann's Definition der Function bei genauerer Untersuchung beträchtliche Schwierigkeiten mit sich bringt<note place="foot"><p>Vergl. die betreffenden Bemerkungen der Vorrede.</p></note>. Man beginnt also etwa mit der algebraischen Gleichung und der Begriffsbestimmung des Integrals, und construirt erst hinterher eine zugehörige Riemann'sche Fläche.</p> <p>Dann aber ist von selbst eine grosse Verallgemeinerung der ursprünglichen Auffassung gegeben. Bislang galten uns zwei Flächen nur dann als gleichwerthig, wenn die eine aus der anderen durch eindeutige conforme Abbildung entstand. Jetzt ist kein Grund mehr, an der Conformität der Abbildung festzuhalten. <hi rendition="#i">Jede Fläche, welche durch stetige Abbildung eindeutig </hi></p> </div> </div> </body> </text> </TEI> [61/0069]
dass die umgekehrte Auffassung im Grunde ebenso berechtigt ist. Das Studium einförmiger Strömungen auf gegebenen Flächen kann umsomehr als Selbstzweck betrachtet werden, als es bei zahlreichen physikalischen Problemen unmittelbar zu Verwerthung gelangt. In der unendlichen Mannigfaltigkeit dieser Strömungen orientirt uns die Riemann'sche Theorie, indem sie auf den Zusammenhang hinweist, der zwischen diesen Strömungen und den algebraischen Functionen der Analysis statt hat.
Wir können endlich den geometrischen Gesichtspunct hervorkehren, und die Riemann'sche Theorie als ein Mittel betrachten, um die Lehre von der conformen Abbildung geschlossener Flächen auf einander der analytischen Behandlung zugänglich zu machen. Eben diese Auffassung ist es, der ich im folgenden, dritten Abschnitte meiner Darstellung Ausdruck zu geben bemüht bin. Es wird nicht nöthig sein, schon an dieser Stelle ausführlicher hierauf einzugehen.
§. 18. Weiterbildung der Theorie.
In Riemann's eigenem Gedankengange, wie ich ihn vorstehend zu schildern versuchte, veranschaulicht die Riemann'sche Fläche nicht nur die in Betracht kommenden Functionen, sondern sie definirt dieselben. Es scheint möglich, diese beiden Dinge zu trennen: die Definition der Functionen von anderer Seite zu nehmen und die Fläche nur als Mittel der Veranschaulichung beizubehalten. Das ist es in der That, was von der Mehrzahl der Mathematiker um so lieber geschehen ist, als Riemann's Definition der Function bei genauerer Untersuchung beträchtliche Schwierigkeiten mit sich bringt . Man beginnt also etwa mit der algebraischen Gleichung und der Begriffsbestimmung des Integrals, und construirt erst hinterher eine zugehörige Riemann'sche Fläche.
Dann aber ist von selbst eine grosse Verallgemeinerung der ursprünglichen Auffassung gegeben. Bislang galten uns zwei Flächen nur dann als gleichwerthig, wenn die eine aus der anderen durch eindeutige conforme Abbildung entstand. Jetzt ist kein Grund mehr, an der Conformität der Abbildung festzuhalten. Jede Fläche, welche durch stetige Abbildung eindeutig
Vergl. die betreffenden Bemerkungen der Vorrede.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde im Rahmen des Moduls DTA-Erweiterungen (DTAE) digitalisiert. Weitere Informationen … gutenberg.org: Bereitstellung der Texttranskription und Auszeichnung in HTML.
(2012-11-06T13:54:31Z)
Bitte beachten Sie, dass die aktuelle Transkription (und Textauszeichnung) mittlerweile nicht mehr dem Stand zum Zeitpunkt der Übernahme aus gutenberg.org entsprechen muss.
gutenberg.org: Bereitstellung der Bilddigitalisate
(2012-11-06T13:54:31Z)
Frank Wiegand: Konvertierung von HTML nach XML/TEI gemäß DTA-Basisformat.
(2012-11-06T13:54:31Z)
Weitere Informationen:Anmerkungen zur Transkription:
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2025 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |