Klein, Felix: Über Riemann's Theorie der Algebraischen Functionen und ihrer Integrale. Leipzig, 1882.folgt, dass dieses kein anderes ist, als das dort betrachtete
§. 17. Tragweite und Bedeutung unserer Betrachtungen. Mit den Entwickelungen des vorigen Paragraphen ist der Zielpunct, den wir uns mit der allgemeinen Fragestellung des §. 7 gesteckt haben, thatsächlich erreicht. Wir haben auf beliebiger Fläche die allgemeinsten für uns in Betracht kommenden complexen Functionen des Ortes bestimmt und nun die analytischen Abhängigkeiten derselben von einander definirt, indem wir zusahen, wie alle von einer, übrigens beliebig gewählten, eindeutigen Function des Ortes im Sinne der gewöhnlichen Analysis abhängig sind. Es bleibt uns also, um unseren Gedankengang abzuschliessen, nur noch ein Umblick zu halten, was Alles durch unsere Betrachtungen gewonnen sein mag. Wir haben dann allerdings keineswegs den vollen Inhalt aber doch die Grundlage der Riemann'schen Theorie gewonnen, und es kann wegen weiterer Ausführungen auf Riemann's Originalarbeit sowie die sonstigen Darstellungen der Theorie verwiesen werden. Constatiren wir zunächst, dass es in der That die Gesammtheit
der algebraischen Functionen und ihrer Integrale
ist, welche durch unsere Untersuchung umspannt wird. Denn
wenn eine beliebige algebraische Gleichung Wir fragen, ob das Studium dieser Functionen durch folgt, dass dieses kein anderes ist, als das dort betrachtete
§. 17. Tragweite und Bedeutung unserer Betrachtungen. Mit den Entwickelungen des vorigen Paragraphen ist der Zielpunct, den wir uns mit der allgemeinen Fragestellung des §. 7 gesteckt haben, thatsächlich erreicht. Wir haben auf beliebiger Fläche die allgemeinsten für uns in Betracht kommenden complexen Functionen des Ortes bestimmt und nun die analytischen Abhängigkeiten derselben von einander definirt, indem wir zusahen, wie alle von einer, übrigens beliebig gewählten, eindeutigen Function des Ortes im Sinne der gewöhnlichen Analysis abhängig sind. Es bleibt uns also, um unseren Gedankengang abzuschliessen, nur noch ein Umblick zu halten, was Alles durch unsere Betrachtungen gewonnen sein mag. Wir haben dann allerdings keineswegs den vollen Inhalt aber doch die Grundlage der Riemann'schen Theorie gewonnen, und es kann wegen weiterer Ausführungen auf Riemann's Originalarbeit sowie die sonstigen Darstellungen der Theorie verwiesen werden. Constatiren wir zunächst, dass es in der That die Gesammtheit
der algebraischen Functionen und ihrer Integrale
ist, welche durch unsere Untersuchung umspannt wird. Denn
wenn eine beliebige algebraische Gleichung Wir fragen, ob das Studium dieser Functionen durch <TEI> <text> <body> <div n="1"> <div> <p><pb facs="#f0067" n="59"/> folgt, dass dieses kein anderes ist, als das dort betrachtete <formula notation="TeX">\displaystyle\int\frac{dz}{w}</formula>, das gewöhnlich sogenannte <hi rendition="#i">Integral erster Gattung</hi>. Die zugehörigen Niveaucurven und Strömungscurven sind dieselben, welche in Figur (21) und (22) dargestellt sind. Aber auch diejenigen Functionen, denen die Figuren (29) und (30), bez. (31) und (32) entsprechen, sind in der gewöhnlichen Analysis wohlbekannt. Wir haben das einemal eine Function mit zwei logarithmischen Unstetigkeitspuncten, das andere Mal eine solche mit nur einem algebraischen Unstetigkeitspuncte. Als Functionen von <hi rendition="#i">z</hi> betrachtet geben dieselben solche elliptische Integrale ab, welche man als <hi rendition="#i">Integrale dritter Gattung</hi> bez. <hi rendition="#i">zweiter Gattung</hi> zu bezeichnen pflegt.</p> </div> <div n="2"> <head>§. 17. Tragweite und Bedeutung unserer Betrachtungen.</head><lb/> <p>Mit den Entwickelungen des vorigen Paragraphen ist der Zielpunct, den wir uns mit der allgemeinen Fragestellung des §. 7 gesteckt haben, thatsächlich erreicht. Wir haben auf beliebiger Fläche die allgemeinsten für uns in Betracht kommenden complexen Functionen des Ortes bestimmt und nun die analytischen Abhängigkeiten derselben von einander definirt, indem wir zusahen, wie alle von einer, übrigens beliebig gewählten, eindeutigen Function des Ortes im Sinne der gewöhnlichen Analysis abhängig sind. Es bleibt uns also, um unseren Gedankengang abzuschliessen, nur noch ein Umblick zu halten, was Alles durch unsere Betrachtungen gewonnen sein mag. Wir haben dann allerdings keineswegs den vollen Inhalt aber doch die Grundlage der Riemann'schen Theorie gewonnen, und es kann wegen weiterer Ausführungen auf Riemann's Originalarbeit sowie die sonstigen Darstellungen der Theorie verwiesen werden.</p> <p>Constatiren wir zunächst, <hi rendition="#i">dass es in der That die Gesammtheit der algebraischen Functionen und ihrer Integrale ist, welche durch unsere Untersuchung umspannt wird</hi>. Denn wenn eine beliebige algebraische Gleichung <formula notation="TeX">f(w, z) = 0</formula> gegeben ist, so können wir in der gewöhnlichen Weise über der <hi rendition="#i">z</hi>-Ebene eine zugehörige mehrblättrige Riemann'sche Fläche construiren und nun auf dieser einförmige Strömungen und complexe Functionen des Ortes studieren (vergl. §. 15).</p> <p>Wir fragen, ob das Studium dieser Functionen durch </p> </div> </div> </body> </text> </TEI> [59/0067]
folgt, dass dieses kein anderes ist, als das dort betrachtete [FORMEL], das gewöhnlich sogenannte Integral erster Gattung. Die zugehörigen Niveaucurven und Strömungscurven sind dieselben, welche in Figur (21) und (22) dargestellt sind. Aber auch diejenigen Functionen, denen die Figuren (29) und (30), bez. (31) und (32) entsprechen, sind in der gewöhnlichen Analysis wohlbekannt. Wir haben das einemal eine Function mit zwei logarithmischen Unstetigkeitspuncten, das andere Mal eine solche mit nur einem algebraischen Unstetigkeitspuncte. Als Functionen von z betrachtet geben dieselben solche elliptische Integrale ab, welche man als Integrale dritter Gattung bez. zweiter Gattung zu bezeichnen pflegt.
§. 17. Tragweite und Bedeutung unserer Betrachtungen.
Mit den Entwickelungen des vorigen Paragraphen ist der Zielpunct, den wir uns mit der allgemeinen Fragestellung des §. 7 gesteckt haben, thatsächlich erreicht. Wir haben auf beliebiger Fläche die allgemeinsten für uns in Betracht kommenden complexen Functionen des Ortes bestimmt und nun die analytischen Abhängigkeiten derselben von einander definirt, indem wir zusahen, wie alle von einer, übrigens beliebig gewählten, eindeutigen Function des Ortes im Sinne der gewöhnlichen Analysis abhängig sind. Es bleibt uns also, um unseren Gedankengang abzuschliessen, nur noch ein Umblick zu halten, was Alles durch unsere Betrachtungen gewonnen sein mag. Wir haben dann allerdings keineswegs den vollen Inhalt aber doch die Grundlage der Riemann'schen Theorie gewonnen, und es kann wegen weiterer Ausführungen auf Riemann's Originalarbeit sowie die sonstigen Darstellungen der Theorie verwiesen werden.
Constatiren wir zunächst, dass es in der That die Gesammtheit der algebraischen Functionen und ihrer Integrale ist, welche durch unsere Untersuchung umspannt wird. Denn wenn eine beliebige algebraische Gleichung [FORMEL] gegeben ist, so können wir in der gewöhnlichen Weise über der z-Ebene eine zugehörige mehrblättrige Riemann'sche Fläche construiren und nun auf dieser einförmige Strömungen und complexe Functionen des Ortes studieren (vergl. §. 15).
Wir fragen, ob das Studium dieser Functionen durch
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/klein_riemann_1882 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/klein_riemann_1882/67 |
Zitationshilfe: | Klein, Felix: Über Riemann's Theorie der Algebraischen Functionen und ihrer Integrale. Leipzig, 1882, S. 59. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/klein_riemann_1882/67>, abgerufen am 22.02.2025. |