Klein, Felix: Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen, 1872.Diese linearen Transformationen der Fläche in sich Alle diese Betrachtungen lassen sich auf beliebig viele Wir erhalten also auf der Kugel und weiterhin auf Die auf diese Gruppe zu gründende Kreisgeometrie ist Diese linearen Transformationen der Fläche in sich Alle diese Betrachtungen lassen sich auf beliebig viele Wir erhalten also auf der Kugel und weiterhin auf Die auf diese Gruppe zu gründende Kreisgeometrie ist <TEI> <text> <body> <div n="1"> <pb facs="#f0035" n="27"/> <p>Diese linearen Transformationen der Fläche in sich<lb/> selbst ergeben, durch (nicht stereographische) Projection<lb/> auf die Ebene übertragen, zweideutige Puncttransformatio-<lb/> nen, vermöge deren aus jeder Tangente des Kegelschnittes,<lb/> der die Uebergangscurve bildet, allerdings wieder eine<lb/> Tangente wird, aus jeder anderen Geraden aber im Allge-<lb/> meinen ein Kegelschnitt, der die Uebergangscurve doppelt<lb/> berührt. Es lässt sich diese Transformationsgruppe passend<lb/> characterisiren, wenn man auf den Kegelschnitt, der die<lb/> Uebergangscurve bildet, eine projectivische Massbestimmung<lb/> gründet. Die Transformationen haben dann die Eigen-<lb/> schaft, Puncte, welche im Sinne der Massbestimmung von<lb/> einander eine Entfernung gleich Null haben, sowie Puncte,<lb/> welche von einem anderen Puncte eine constante Entfer-<lb/> nung haben, wieder in solche Puncte zu verwandeln.</p><lb/> <p>Alle diese Betrachtungen lassen sich auf beliebig viele<lb/> Variabeln übertragen, insbesondere also für die ursprüng-<lb/> liche Fragestellung, die sich auf die Kugel und die Ebene<lb/> als Element bezog, verwerthen. Man kann dem Resultate<lb/> dabei eine besonders anschauliche Form geben, weil der<lb/> Winkel, den zwei Ebenen im Sinne der auf eine Kugel<lb/> gegründeten projectivischen Massbestimmung mit einander<lb/> bilden, mit dem Winkel gleich ist, den ihre Durchschnitts-<lb/> kreise mit der Kugel im gewöhnlichen Sinne mit einander<lb/> bilden.</p><lb/> <p>Wir erhalten also auf der Kugel und weiterhin auf<lb/> der Ebene eine Gruppe von Kreistransformationen, welche<lb/> die Eigenschaft haben, <hi rendition="#g">Kreise, die einander berüh-<lb/> ren</hi> (<hi rendition="#g">einen Winkel gleich Null einschliessen</hi>), <hi rendition="#g">so-<lb/> wie Kreise, die einen anderen Kreis unter glei-<lb/> chem Winkel schneiden, in eben solche Kreise<lb/> überzuführen</hi>. In der Gruppe dieser Transformationen<lb/> sind auf der Kugel die bez. linearen, in der Ebene die<lb/> Transformationen der Gruppe der reciproken Radien ent-<lb/> halten.</p><lb/> <p>Die auf diese Gruppe zu gründende Kreisgeometrie ist<lb/> nun das Analogon zu der <hi rendition="#g">Kugelgeometrie</hi>, wie sie<lb/><hi rendition="#g">Lie</hi> für den Raum entworfen hat, und wie sie bei Unter-<lb/></p> </div> </body> </text> </TEI> [27/0035]
Diese linearen Transformationen der Fläche in sich
selbst ergeben, durch (nicht stereographische) Projection
auf die Ebene übertragen, zweideutige Puncttransformatio-
nen, vermöge deren aus jeder Tangente des Kegelschnittes,
der die Uebergangscurve bildet, allerdings wieder eine
Tangente wird, aus jeder anderen Geraden aber im Allge-
meinen ein Kegelschnitt, der die Uebergangscurve doppelt
berührt. Es lässt sich diese Transformationsgruppe passend
characterisiren, wenn man auf den Kegelschnitt, der die
Uebergangscurve bildet, eine projectivische Massbestimmung
gründet. Die Transformationen haben dann die Eigen-
schaft, Puncte, welche im Sinne der Massbestimmung von
einander eine Entfernung gleich Null haben, sowie Puncte,
welche von einem anderen Puncte eine constante Entfer-
nung haben, wieder in solche Puncte zu verwandeln.
Alle diese Betrachtungen lassen sich auf beliebig viele
Variabeln übertragen, insbesondere also für die ursprüng-
liche Fragestellung, die sich auf die Kugel und die Ebene
als Element bezog, verwerthen. Man kann dem Resultate
dabei eine besonders anschauliche Form geben, weil der
Winkel, den zwei Ebenen im Sinne der auf eine Kugel
gegründeten projectivischen Massbestimmung mit einander
bilden, mit dem Winkel gleich ist, den ihre Durchschnitts-
kreise mit der Kugel im gewöhnlichen Sinne mit einander
bilden.
Wir erhalten also auf der Kugel und weiterhin auf
der Ebene eine Gruppe von Kreistransformationen, welche
die Eigenschaft haben, Kreise, die einander berüh-
ren (einen Winkel gleich Null einschliessen), so-
wie Kreise, die einen anderen Kreis unter glei-
chem Winkel schneiden, in eben solche Kreise
überzuführen. In der Gruppe dieser Transformationen
sind auf der Kugel die bez. linearen, in der Ebene die
Transformationen der Gruppe der reciproken Radien ent-
halten.
Die auf diese Gruppe zu gründende Kreisgeometrie ist
nun das Analogon zu der Kugelgeometrie, wie sie
Lie für den Raum entworfen hat, und wie sie bei Unter-
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |