Helmholtz, Hermann von: Theorie der Luftschwingungen in Röhren mit offenen Enden. In: Journal für die reine und angewandte Mathematik 57 (1860), Heft 1, S. 1-72.Helmholtz, über Luftschwingungen in offenen Röhren. gross wie (R -- r)-- 1/3 werden müsste, und daher die Reihe für für denWerth r = R und x = 0 überhaupt nicht convergiren kann. Wir fügen deshalb zu Ph noch eine andere Function hinzu, die in Bezeichnen wir der Einfachheit wegen die Potentialfunction einer auf Helmholtz, über Luftschwingungen in offenen Röhren. groſs wie (R — ϱ)— ⅓ werden müſste, und daher die Reihe für für denWerth ϱ = R und x = 0 überhaupt nicht convergiren kann. Wir fügen deshalb zu Φ noch eine andere Function hinzu, die in Bezeichnen wir der Einfachheit wegen die Potentialfunction einer auf <TEI> <text> <body> <div n="1"> <div n="2"> <p><pb facs="#f0064" n="54"/><fw place="top" type="header"><hi rendition="#i"><hi rendition="#g">Helmholtz</hi>, über Luftschwingungen in offenen Röhren.</hi></fw><lb/> groſs wie (<hi rendition="#b"><hi rendition="#i">R</hi></hi> — ϱ)<hi rendition="#sup">— ⅓</hi> werden müſste, und daher die Reihe für <formula notation="TeX">\frac{d\Phi}{dx}</formula> für den<lb/> Werth ϱ = <hi rendition="#b"><hi rendition="#i">R</hi></hi> und <hi rendition="#i">x</hi> = 0 überhaupt nicht convergiren kann.</p><lb/> <p>Wir fügen deshalb zu Φ noch eine andere Function hinzu, die in<lb/> gröſserer Entfernung von der Oeffnung verschwindet, also auch nur in der<lb/> Nähe der Oeffnung Einfluſs auf die Gestalt der Röhre ausübt, aber die Con-<lb/> tinuität an der Oeffnung herstellt.</p><lb/> <p>Bezeichnen wir der Einfachheit wegen die Potentialfunction einer auf<lb/> der Kreisfläche der Oeffnung mit der Dichtigkeit <hi rendition="#b"><hi rendition="#i">h</hi></hi> verbreiteten Masse mit<lb/><hi rendition="#i"><hi rendition="#b">P</hi><hi rendition="#sub">h</hi></hi>, also<lb/> (20.) <formula notation="TeX">P_h = \int h\frac{\cos kr}{r}d\omega</formula>,<lb/> dieses Integral über die ganze Fläche der Oeffnung genommen. Wenn die<lb/> Distanz des Punktes, für welchen wir <hi rendition="#i"><hi rendition="#b">P</hi><hi rendition="#sub">h</hi></hi> bestimmen, von der Oeffnung klein<lb/> ist, so ist cos <hi rendition="#b"><hi rendition="#i">kr</hi></hi> = 1 und<lb/> (20<hi rendition="#i"><hi rendition="#sup">a</hi></hi>.) <formula notation="TeX">P_h = \int\frac{hd\omega}{r}</formula>.<lb/> Setzen wir ferner<lb/> (21.) <formula notation="TeX">h = i + l</formula>,<lb/> (21<hi rendition="#i"><hi rendition="#sup">a</hi></hi>.) <formula notation="TeX">i = -\frac{1}{4\pi}\frac{d\overline{\Phi}}{dx}</formula>,<lb/> und bestimmen wir <hi rendition="#b"><hi rendition="#i">l</hi></hi> so, daſs in der Fläche der Oeffnung<lb/> (21<hi rendition="#i"><hi rendition="#sup">b</hi></hi>.) <formula notation="TeX">\overline{P_l} = \tfrac{1}{2}\overline{\Phi}</formula>,<lb/> was sich immer ausführen läſst, weil die Vertheilung einer Masse auf einer<lb/> Kreisscheibe, die an der Oberfläche dieser Scheibe eine Potentialfunction von<lb/> gegebener Gröſse giebt, nach bekannten Methoden gefunden werden kann.<lb/> Setzen wir ferner auf Seite der positiven <hi rendition="#i">x</hi>, wie schon oben geschehen,<lb/> (21<hi rendition="#i"><hi rendition="#sup">c</hi></hi>.) <formula notation="TeX">\Psi' = P_h = P_i + P_l</formula><lb/> in der Röhre, also für negative <hi rendition="#i">x</hi><lb/> (21<hi rendition="#i"><hi rendition="#sup">d</hi></hi>.) <formula notation="TeX">\Psi_i = \Phi + P_i - P_l</formula>,<lb/> so genügen die Functionen Ψ' und Ψ<hi rendition="#i"><hi rendition="#sub">i</hi></hi> allen für sie gestellten Bedingungen.<lb/> Daſs nämlich Ψ' im freien Raume und Ψ<hi rendition="#i"><hi rendition="#sub">i</hi></hi> im Innern der Röhre der Bedin-<lb/> gung genügen:<lb/> (18<hi rendition="#i"><hi rendition="#sup">a</hi></hi>.) <formula notation="TeX">\nabla\Psi + k^2\Psi = 0</formula>,<lb/> ist aus der Bildungsweise dieser Functionen klar. Daſs Ψ<hi rendition="#i"><hi rendition="#sub">i</hi></hi> für groſse Werthe<lb/></p> </div> </div> </body> </text> </TEI> [54/0064]
Helmholtz, über Luftschwingungen in offenen Röhren.
groſs wie (R — ϱ)— ⅓ werden müſste, und daher die Reihe für [FORMEL] für den
Werth ϱ = R und x = 0 überhaupt nicht convergiren kann.
Wir fügen deshalb zu Φ noch eine andere Function hinzu, die in
gröſserer Entfernung von der Oeffnung verschwindet, also auch nur in der
Nähe der Oeffnung Einfluſs auf die Gestalt der Röhre ausübt, aber die Con-
tinuität an der Oeffnung herstellt.
Bezeichnen wir der Einfachheit wegen die Potentialfunction einer auf
der Kreisfläche der Oeffnung mit der Dichtigkeit h verbreiteten Masse mit
Ph, also
(20.) [FORMEL],
dieses Integral über die ganze Fläche der Oeffnung genommen. Wenn die
Distanz des Punktes, für welchen wir Ph bestimmen, von der Oeffnung klein
ist, so ist cos kr = 1 und
(20a.) [FORMEL].
Setzen wir ferner
(21.) [FORMEL],
(21a.) [FORMEL],
und bestimmen wir l so, daſs in der Fläche der Oeffnung
(21b.) [FORMEL],
was sich immer ausführen läſst, weil die Vertheilung einer Masse auf einer
Kreisscheibe, die an der Oberfläche dieser Scheibe eine Potentialfunction von
gegebener Gröſse giebt, nach bekannten Methoden gefunden werden kann.
Setzen wir ferner auf Seite der positiven x, wie schon oben geschehen,
(21c.) [FORMEL]
in der Röhre, also für negative x
(21d.) [FORMEL],
so genügen die Functionen Ψ' und Ψi allen für sie gestellten Bedingungen.
Daſs nämlich Ψ' im freien Raume und Ψi im Innern der Röhre der Bedin-
gung genügen:
(18a.) [FORMEL],
ist aus der Bildungsweise dieser Functionen klar. Daſs Ψi für groſse Werthe
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |