Graßmann, Hermann: Die Wissenschaft der extensiven Grösse oder die Ausdehnungslehre, eine neue mathematische Disciplin. Bd. 1. Leipzig, 1844.Addition u. Subtr. der Strecken. § 24 Aufg. 1. Eine Strecke AX zu zeichnen, welche einer gegebe- nen BC gleich und gleichläufig ist (vergl. Fig. 7). Aufl. Man ziehe AD parallel BC und CE parallel BA, so ist der Durchschnittspunkt dieser beiden Linien der gesuchte Punkt X. Liegt ins besondere der Punkt A in der geraden Linie BC, so nehme man einen Punkt ausserhalb derselben D, mache nach dem so eben angegebenen Verfahren DE [] BC und AF [] DE, so ist F der gesuchte Punkt X. Aufg. 2. Eine Strecke in beliebig viele gleiche Theile zu theilen. Aufg. 3. Den Punkt X zu finden, welcher der Gleichung [AX] = [BC] + [DE] genügt *) (vergl. Fig. 8). Aufl. Man macht AF [] BC und FG [] DE, so ist G der gesuchte Punkt. Aufg. 4. Den Punkt X zu finden, welcher der Gleichung [AX] = [BC] -- [DE] genügt. Für die folgenden Sätze und Aufgaben will ich ein Paar neue Be- *) Ich bediene mich hier der in der abstrakten Wissenschaft eingeführten
Bezeichnung der Strecken, indem ich unter [AB] die Strecke mit festgehaltener Richtung und Länge bezeichne, weshalb hier das Gleichheitszeichen auch wieder das gewöhnliche ist. Addition u. Subtr. der Strecken. § 24 Aufg. 1. Eine Strecke AX zu zeichnen, welche einer gegebe- nen BC gleich und gleichläufig ist (vergl. Fig. 7). Aufl. Man ziehe AD parallel BC und CE parallel BA, so ist der Durchschnittspunkt dieser beiden Linien der gesuchte Punkt X. Liegt ins besondere der Punkt A in der geraden Linie BC, so nehme man einen Punkt ausserhalb derselben D, mache nach dem so eben angegebenen Verfahren DE [⌗] BC und AF [⌗] DE, so ist F der gesuchte Punkt X. Aufg. 2. Eine Strecke in beliebig viele gleiche Theile zu theilen. Aufg. 3. Den Punkt X zu finden, welcher der Gleichung [AX] = [BC] + [DE] genügt *) (vergl. Fig. 8). Aufl. Man macht AF [⌗] BC und FG [⌗] DE, so ist G der gesuchte Punkt. Aufg. 4. Den Punkt X zu finden, welcher der Gleichung [AX] = [BC] — [DE] genügt. Für die folgenden Sätze und Aufgaben will ich ein Paar neue Be- *) Ich bediene mich hier der in der abstrakten Wissenschaft eingeführten
Bezeichnung der Strecken, indem ich unter [AB] die Strecke mit festgehaltener Richtung und Länge bezeichne, weshalb hier das Gleichheitszeichen auch wieder das gewöhnliche ist. <TEI> <text> <body> <div n="1"> <div n="2"> <pb facs="#f0076" n="40"/> <fw place="top" type="header">Addition u. Subtr. der Strecken. <hi rendition="#b">§ 24</hi></fw><lb/> <list> <item><hi rendition="#g">Aufg.</hi> 1. Eine Strecke AX zu zeichnen, welche einer gegebe-<lb/> nen BC gleich und gleichläufig ist (vergl. Fig. 7).</item><lb/> <item><hi rendition="#g">Aufl.</hi> Man ziehe AD parallel BC und CE parallel BA, so ist<lb/> der Durchschnittspunkt dieser beiden Linien der gesuchte<lb/> Punkt X. Liegt ins besondere der Punkt A in der geraden<lb/> Linie BC, so nehme man einen Punkt ausserhalb derselben<lb/> D, mache nach dem so eben angegebenen Verfahren DE <supplied>⌗</supplied> BC<lb/> und AF <supplied>⌗</supplied> DE, so ist F der gesuchte Punkt X.</item> </list><lb/> <p><hi rendition="#g">Aufg.</hi> 2. Eine Strecke in beliebig viele gleiche Theile zu theilen.<lb/> Die Auflösung kann vermittelst der in der vorigen Aufgabe gegebe-<lb/> nen Konstruktion auf die gewöhnliche Auflösung zurückgeführt<lb/> werden.</p><lb/> <list> <item><hi rendition="#g">Aufg.</hi> 3. Den Punkt X zu finden, welcher der Gleichung [AX]<lb/> = [BC] + [DE] genügt <note place="foot" n="*)">Ich bediene mich hier der in der abstrakten Wissenschaft eingeführten<lb/> Bezeichnung der Strecken, indem ich unter [AB] die Strecke mit festgehaltener<lb/> Richtung und Länge bezeichne, weshalb hier das Gleichheitszeichen auch wieder<lb/> das gewöhnliche ist.</note> (vergl. Fig. 8).</item><lb/> <item><hi rendition="#g">Aufl.</hi> Man macht AF <supplied>⌗</supplied> BC und FG <supplied>⌗</supplied> DE, so ist G der gesuchte<lb/> Punkt.</item><lb/> <item><hi rendition="#g">Aufg.</hi> 4. Den Punkt X zu finden, welcher der Gleichung [AX]<lb/> = [BC] — [DE] genügt.</item> </list><lb/> <p>Für die folgenden Sätze und Aufgaben will ich ein Paar neue Be-<lb/> nennungen einführen, welche zur Erleichterung der Ausdrucksweise<lb/> wesentlich sind, nämlich unter der Abweichung des Punktes A von<lb/> einem andern B verstehe ich die Strecke BA mit Festhaltung ihrer<lb/> Richtung und Länge, und unter der Gesammtabweichung eines<lb/> Punktes R von einer Punktreihe A, B, C, ... verstehe ich die Summe<lb/> der Abweichungen jenes Punktes von den einzelnen Punkten dieser<lb/> Reihe, also die Summe [AR] + [BR] + [CR] + ...., wobei, wie<lb/> sich von selbst versteht, der im Vorigen entwickelte Begriff der<lb/> Summe zu Grunde gelegt ist. Hieraus ist von selbst klar, dass die<lb/> Gesammtabweichung einer Punktreihe A, B, C ... von einem Punkte<lb/> R die Summe [RA] + [RB] + [RC] + ... darstelle. Nun kann<lb/> ich aus einer Gleichung<lb/><hi rendition="#et">1) .... [AB] + [CD] + [EF] + .... = 0,</hi><lb/></p> </div> </div> </body> </text> </TEI> [40/0076]
Addition u. Subtr. der Strecken. § 24
Aufg. 1. Eine Strecke AX zu zeichnen, welche einer gegebe-
nen BC gleich und gleichläufig ist (vergl. Fig. 7).
Aufl. Man ziehe AD parallel BC und CE parallel BA, so ist
der Durchschnittspunkt dieser beiden Linien der gesuchte
Punkt X. Liegt ins besondere der Punkt A in der geraden
Linie BC, so nehme man einen Punkt ausserhalb derselben
D, mache nach dem so eben angegebenen Verfahren DE ⌗ BC
und AF ⌗ DE, so ist F der gesuchte Punkt X.
Aufg. 2. Eine Strecke in beliebig viele gleiche Theile zu theilen.
Die Auflösung kann vermittelst der in der vorigen Aufgabe gegebe-
nen Konstruktion auf die gewöhnliche Auflösung zurückgeführt
werden.
Aufg. 3. Den Punkt X zu finden, welcher der Gleichung [AX]
= [BC] + [DE] genügt *) (vergl. Fig. 8).
Aufl. Man macht AF ⌗ BC und FG ⌗ DE, so ist G der gesuchte
Punkt.
Aufg. 4. Den Punkt X zu finden, welcher der Gleichung [AX]
= [BC] — [DE] genügt.
Für die folgenden Sätze und Aufgaben will ich ein Paar neue Be-
nennungen einführen, welche zur Erleichterung der Ausdrucksweise
wesentlich sind, nämlich unter der Abweichung des Punktes A von
einem andern B verstehe ich die Strecke BA mit Festhaltung ihrer
Richtung und Länge, und unter der Gesammtabweichung eines
Punktes R von einer Punktreihe A, B, C, ... verstehe ich die Summe
der Abweichungen jenes Punktes von den einzelnen Punkten dieser
Reihe, also die Summe [AR] + [BR] + [CR] + ...., wobei, wie
sich von selbst versteht, der im Vorigen entwickelte Begriff der
Summe zu Grunde gelegt ist. Hieraus ist von selbst klar, dass die
Gesammtabweichung einer Punktreihe A, B, C ... von einem Punkte
R die Summe [RA] + [RB] + [RC] + ... darstelle. Nun kann
ich aus einer Gleichung
1) .... [AB] + [CD] + [EF] + .... = 0,
*) Ich bediene mich hier der in der abstrakten Wissenschaft eingeführten
Bezeichnung der Strecken, indem ich unter [AB] die Strecke mit festgehaltener
Richtung und Länge bezeichne, weshalb hier das Gleichheitszeichen auch wieder
das gewöhnliche ist.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |