Graßmann, Hermann: Die Wissenschaft der extensiven Grösse oder die Ausdehnungslehre, eine neue mathematische Disciplin. Bd. 1. Leipzig, 1844.§ 10 Verkn. höherer Stufen -- Multiplikation. die Multiplikation also als die Verknüpfung zweiter Stufe *). Wirwählen von nun an statt der allgemeinen Verknüpfungszeichen die bestimmten für diese Verknüpfungsarten üblichen, und zwar wäh- len wir für die Multiplikation das blosse Aneinanderschreiben. §. 10. Die Beziehung der Multiplikation zur Addition haben *) Als dritte Stufe würde sich nach demselben Prinzip das Potenziren dar-
stellen, was wir hier aber der Kürze wegen übergehen. Dass übrigens die Be- griffsbestimmung für diese Verknüpfungen hier nur eine formelle sein, und erst in den einzelnen Wissenschaften durch Realdefinitionen verkörpert werden kann, liegt in der Natur der Sache. § 10 Verkn. höherer Stufen — Multiplikation. die Multiplikation also als die Verknüpfung zweiter Stufe *). Wirwählen von nun an statt der allgemeinen Verknüpfungszeichen die bestimmten für diese Verknüpfungsarten üblichen, und zwar wäh- len wir für die Multiplikation das blosse Aneinanderschreiben. §. 10. Die Beziehung der Multiplikation zur Addition haben *) Als dritte Stufe würde sich nach demselben Prinzip das Potenziren dar-
stellen, was wir hier aber der Kürze wegen übergehen. Dass übrigens die Be- griffsbestimmung für diese Verknüpfungen hier nur eine formelle sein, und erst in den einzelnen Wissenschaften durch Realdefinitionen verkörpert werden kann, liegt in der Natur der Sache. <TEI> <text> <body> <div n="1"> <p><pb facs="#f0047" n="11"/><fw place="top" type="header">§ 10 Verkn. höherer Stufen — Multiplikation.</fw><lb/> die Multiplikation also als die Verknüpfung zweiter Stufe <note place="foot" n="*)">Als dritte Stufe würde sich nach demselben Prinzip das Potenziren dar-<lb/> stellen, was wir hier aber der Kürze wegen übergehen. Dass übrigens die Be-<lb/> griffsbestimmung für diese Verknüpfungen hier nur eine formelle sein, und erst<lb/> in den einzelnen Wissenschaften durch Realdefinitionen verkörpert werden kann,<lb/> liegt in der Natur der Sache.</note>. Wir<lb/> wählen von nun an statt der allgemeinen Verknüpfungszeichen die<lb/> bestimmten für diese Verknüpfungsarten üblichen, und zwar wäh-<lb/> len wir für die Multiplikation das blosse Aneinanderschreiben.</p><lb/> <p>§. 10. Die Beziehung der Multiplikation zur Addition haben<lb/> wir dahin bestimmt, dass<lb/><formula/> ist; und dadurch war uns der Begriff der Multiplikation festgestellt.<lb/> Durch wiederholte Anwendung dieses Grundgesetzes gelangt man<lb/> sogleich zu dem allgemeineren Satze, dass man, wenn beide Fakto-<lb/> ren zerstückt sind, jedes Stück des einen mit jedem Stück des<lb/> andern multipliciren und die Produkte addiren kann. Hieraus er-<lb/> giebt sich für die Beziehung der Multiplikation zur Subtraktion ein<lb/> entsprechendes Gesetz, nämlich zunächst, dass<lb/><formula/> ist. Nämlich setzt man, um den zweiten Ausdruck auf den ersten<lb/> zurückzuführen, in demselben statt a das ihm Gleiche (a—b)+b,<lb/> so hat man<lb/><formula/>;<lb/> der zweite Ausdruck ist nach dem so eben aufgestellten Gesetze<lb/><formula/>,<lb/> und dieser Ausdruck nach § 8<lb/><formula/>,<lb/> also der erste Ausdruck dem letzten gleich. Auf gleiche Weise<lb/> folgt, wenn der zweite Faktor eine Differenz ist, das entsprechende<lb/> Gesetz. Durch wiederholte Anwendung dieser Gesetze gelangt man<lb/> zu dem allgemeineren Satze:<lb/><cit><quote>„Wenn die Faktoren eines Produktes durch Addition und<lb/> Subtraktion gegliedert sind, so kann man ohne Aenderung des<lb/> Gesammtergebnisses, jedes Glied des einen mit jedem Gliede<lb/> des andern multipliciren, und die so erhaltenen Produkte<lb/></quote></cit></p> </div> </body> </text> </TEI> [11/0047]
§ 10 Verkn. höherer Stufen — Multiplikation.
die Multiplikation also als die Verknüpfung zweiter Stufe *). Wir
wählen von nun an statt der allgemeinen Verknüpfungszeichen die
bestimmten für diese Verknüpfungsarten üblichen, und zwar wäh-
len wir für die Multiplikation das blosse Aneinanderschreiben.
§. 10. Die Beziehung der Multiplikation zur Addition haben
wir dahin bestimmt, dass
[FORMEL] ist; und dadurch war uns der Begriff der Multiplikation festgestellt.
Durch wiederholte Anwendung dieses Grundgesetzes gelangt man
sogleich zu dem allgemeineren Satze, dass man, wenn beide Fakto-
ren zerstückt sind, jedes Stück des einen mit jedem Stück des
andern multipliciren und die Produkte addiren kann. Hieraus er-
giebt sich für die Beziehung der Multiplikation zur Subtraktion ein
entsprechendes Gesetz, nämlich zunächst, dass
[FORMEL] ist. Nämlich setzt man, um den zweiten Ausdruck auf den ersten
zurückzuführen, in demselben statt a das ihm Gleiche (a—b)+b,
so hat man
[FORMEL];
der zweite Ausdruck ist nach dem so eben aufgestellten Gesetze
[FORMEL],
und dieser Ausdruck nach § 8
[FORMEL],
also der erste Ausdruck dem letzten gleich. Auf gleiche Weise
folgt, wenn der zweite Faktor eine Differenz ist, das entsprechende
Gesetz. Durch wiederholte Anwendung dieser Gesetze gelangt man
zu dem allgemeineren Satze:
„Wenn die Faktoren eines Produktes durch Addition und
Subtraktion gegliedert sind, so kann man ohne Aenderung des
Gesammtergebnisses, jedes Glied des einen mit jedem Gliede
des andern multipliciren, und die so erhaltenen Produkte
*) Als dritte Stufe würde sich nach demselben Prinzip das Potenziren dar-
stellen, was wir hier aber der Kürze wegen übergehen. Dass übrigens die Be-
griffsbestimmung für diese Verknüpfungen hier nur eine formelle sein, und erst
in den einzelnen Wissenschaften durch Realdefinitionen verkörpert werden kann,
liegt in der Natur der Sache.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools ?Language Resource Switchboard?FeedbackSie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden. Kommentar zur DTA-AusgabeDieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.
|
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der Herabwürdigung der Menschenwürde gezeigt werden. Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des § 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2024 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften.
Kontakt: redaktion(at)deutschestextarchiv.de. |