dern. Dagegen ist es nicht so schwierig, den Raum zu finden, welchen ein Körper in einer bestimmten Anzahl von Sekunden zurücklegt.
Genaue Beobachtungen dieser Art sind sehr häufig gemacht worden, und man hat gefunden, dass der Raum eines Körpers in der ersten Sekunde 15,515 Niederösterreicher Fuss betrage. Man bezeichnet diesen Raum in der ersten Sekunde gewöhnlich mit dem Buchstaben g, so dass g = 15,515 Fuss ist. Diess gewährt den Vortheil, dass man nun g in jedem Lande, wo ein anderes Maass üblich ist, in diesem Maasse berechnen kann. So beträgt g = 15,098 Pariser Fuss, 15,624 Berliner Fuss u. s. w. Da nun die Gleichung S =
[Formel 1]
für den Fallraum der Körper allgemein gilt, so findet sie auch für t = 1 statt, in welchem Falle S = 15,5 = g wird, und wenn man diess substituirt, so ist 15,5 =
[Formel 2]
= g, woraus c = 31 Fuss = 2 g folgt, d. h. die Endgeschwindigkeit eines freifallenden Körpers nach der ersten Sekunde beträgt 31 Fuss; würde daher die Schwere nach der ersten Sekunde auf den Körper zu wirken aufhören, so würde er in der zweiten und jeder folgenden Sekunde den Raum von 31 Fuss zurücklegen.
Wir haben daher zur Bestimmung des freien Falles der Körper die 2 Gleichungen S =
[Formel 3]
= g . t2 und v = c . t = 2 g . t. *)
§. 484.
Aus der Gleichung S = g . t2 folgt, dass die Räume, welche in verschie- denen Zeiten bei einer gleichförmig beschleunigten Bewegung zurückgelegt werden, sich wie die Quadrate dieser Zeiten verhalten.
Wenn man nämlich für t verschiedene Werthe annimmt, und zwar: t = 0, 1, 2, 3, 4 ......, so ist S = 0, g, 4 g, 9 g, 16 g ......, d. h. die Räume sind den Quadraten der natürlichen Zahlen proportional; wenn man jedoch in der Reihe 0, g, 4 g, 9 g, 16 g ... die Differenzen nimmt, so betragen selbe g, 3 g, 5 g, 7 g ..., d. h. die Räume, welche durch den freien Fall in gleichen hinter einander folgenden Zeitabtheilungen zurückgelegt werden, wachsen wie die ungeraden Zahlen 1, 3, 5, 7, 9 ....
§. 485.
In den Gleichungen S = g . t2 und v = 2 g . t kommen (da g bestimmt ist) 3 veränderliche Grössen S, t und v vor; wenn daher nur eine Grösse gegeben ist, so kann man die übrigen 2 finden, und zwar:
*) Nach den Gesetzen der Differenzialrechnung wird der Raum d S in einer unendlich kleinen Zeit d t erhalten, wenn die Geschwindigkeit 2 g . t, womit sich der Körper bewegt, mit d t multiplicirt wird, indem in der unendlich kleinen Zeit keine Beschleunigung eintritt, also ist d S = 2 g . t . d t. Das Integral hievon ist S = g . t2, wo keine beständige Grösse beizusetzen kommt, weil für t = 0 der Raum S verschwindet.
Freier Fall der Körper.
dern. Dagegen ist es nicht so schwierig, den Raum zu finden, welchen ein Körper in einer bestimmten Anzahl von Sekunden zurücklegt.
Genaue Beobachtungen dieser Art sind sehr häufig gemacht worden, und man hat gefunden, dass der Raum eines Körpers in der ersten Sekunde 15,515 Niederösterreicher Fuss betrage. Man bezeichnet diesen Raum in der ersten Sekunde gewöhnlich mit dem Buchstaben g, so dass g = 15,515 Fuss ist. Diess gewährt den Vortheil, dass man nun g in jedem Lande, wo ein anderes Maass üblich ist, in diesem Maasse berechnen kann. So beträgt g = 15,098 Pariser Fuss, 15,624 Berliner Fuss u. s. w. Da nun die Gleichung S =
[Formel 1]
für den Fallraum der Körper allgemein gilt, so findet sie auch für t = 1 statt, in welchem Falle S = 15,5 = g wird, und wenn man diess substituirt, so ist 15,5 =
[Formel 2]
= g, woraus c = 31 Fuss = 2 g folgt, d. h. die Endgeschwindigkeit eines freifallenden Körpers nach der ersten Sekunde beträgt 31 Fuss; würde daher die Schwere nach der ersten Sekunde auf den Körper zu wirken aufhören, so würde er in der zweiten und jeder folgenden Sekunde den Raum von 31 Fuss zurücklegen.
Wir haben daher zur Bestimmung des freien Falles der Körper die 2 Gleichungen S =
[Formel 3]
= g . t2 und v = c . t = 2 g . t. *)
§. 484.
Aus der Gleichung S = g . t2 folgt, dass die Räume, welche in verschie- denen Zeiten bei einer gleichförmig beschleunigten Bewegung zurückgelegt werden, sich wie die Quadrate dieser Zeiten verhalten.
Wenn man nämlich für t verschiedene Werthe annimmt, und zwar: t = 0, 1, 2, 3, 4 ......, so ist S = 0, g, 4 g, 9 g, 16 g ......, d. h. die Räume sind den Quadraten der natürlichen Zahlen proportional; wenn man jedoch in der Reihe 0, g, 4 g, 9 g, 16 g … die Differenzen nimmt, so betragen selbe g, 3 g, 5 g, 7 g …, d. h. die Räume, welche durch den freien Fall in gleichen hinter einander folgenden Zeitabtheilungen zurückgelegt werden, wachsen wie die ungeraden Zahlen 1, 3, 5, 7, 9 ....
§. 485.
In den Gleichungen S = g . t2 und v = 2 g . t kommen (da g bestimmt ist) 3 veränderliche Grössen S, t und v vor; wenn daher nur eine Grösse gegeben ist, so kann man die übrigen 2 finden, und zwar:
*) Nach den Gesetzen der Differenzialrechnung wird der Raum d S in einer unendlich kleinen Zeit d t erhalten, wenn die Geschwindigkeit 2 g . t, womit sich der Körper bewegt, mit d t multiplicirt wird, indem in der unendlich kleinen Zeit keine Beschleunigung eintritt, also ist d S = 2 g . t . d t. Das Integral hievon ist S = g . t2, wo keine beständige Grösse beizusetzen kommt, weil für t = 0 der Raum S verschwindet.
<TEI><text><body><divn="1"><divn="2"><divn="3"><p><pbfacs="#f0567"n="535"/><fwplace="top"type="header"><hirendition="#i">Freier Fall der Körper.</hi></fw><lb/>
dern. Dagegen ist es nicht so schwierig, den Raum zu finden, welchen ein Körper in<lb/>
einer bestimmten Anzahl von Sekunden zurücklegt.</p><lb/><p>Genaue Beobachtungen dieser Art sind sehr häufig gemacht worden, und man hat<lb/>
gefunden, dass der Raum eines Körpers in der ersten Sekunde 15,<hirendition="#sub">515</hi> Niederösterreicher<lb/>
Fuss betrage. Man bezeichnet diesen Raum in der ersten Sekunde gewöhnlich mit dem<lb/>
Buchstaben g, so dass g = 15,<hirendition="#sub">515</hi> Fuss ist. Diess gewährt den Vortheil, dass man nun g<lb/>
in jedem Lande, wo ein anderes Maass üblich ist, in diesem Maasse berechnen kann.<lb/>
So beträgt g = 15,<hirendition="#sub">098</hi> Pariser Fuss, 15,<hirendition="#sub">624</hi> Berliner Fuss u. s. w. Da nun die Gleichung<lb/>
S = <formula/> für den Fallraum der Körper allgemein gilt, so findet sie auch für t = 1 statt,<lb/>
in welchem Falle S = 15,<hirendition="#sub">5</hi> = g wird, und wenn man diess substituirt, so ist<lb/>
15,<hirendition="#sub">5</hi> = <formula/> = g, woraus c = 31 Fuss = 2 g folgt, d. h. die Endgeschwindigkeit<lb/>
eines freifallenden Körpers nach der ersten Sekunde beträgt 31 Fuss; würde daher die<lb/>
Schwere nach der ersten Sekunde auf den Körper zu wirken aufhören, so würde er in<lb/>
der zweiten und jeder folgenden Sekunde den Raum von 31 Fuss zurücklegen.</p><lb/><p>Wir haben daher zur Bestimmung des freien Falles der Körper die 2 Gleichungen<lb/>
S = <formula/> = g . t<hirendition="#sup">2</hi> und v = c . t = 2 g . t. <noteplace="foot"n="*)">Nach den Gesetzen der Differenzialrechnung wird der Raum d S in einer unendlich kleinen Zeit d t<lb/>
erhalten, wenn die Geschwindigkeit 2 g . t, womit sich der Körper bewegt, mit d t multiplicirt<lb/>
wird, indem in der unendlich kleinen Zeit keine Beschleunigung eintritt, also ist d S = 2 g . t . d t.<lb/>
Das Integral hievon ist S = g . t<hirendition="#sup">2</hi>, wo keine beständige Grösse beizusetzen kommt, weil für t = 0<lb/>
der Raum S verschwindet.</note></p></div><lb/><divn="3"><head>§. 484.</head><lb/><p>Aus der Gleichung S = g . t<hirendition="#sup">2</hi> folgt, dass <hirendition="#g">die Räume, welche in verschie-<lb/>
denen Zeiten bei einer gleichförmig beschleunigten Bewegung<lb/>
zurückgelegt werden, sich wie die Quadrate dieser Zeiten verhalten</hi>.</p><lb/><p>Wenn man nämlich für t verschiedene Werthe annimmt, und zwar:<lb/>
t = 0, 1, 2, 3, 4 ......, so ist S = 0, g, 4 g, 9 g, 16 g ......, d. h. die<lb/>
Räume sind den Quadraten der natürlichen Zahlen proportional; wenn man jedoch in<lb/>
der Reihe 0, g, 4 g, 9 g, 16 g … die Differenzen nimmt, so betragen selbe<lb/>
g, 3 g, 5 g, 7 g …, d. h. <hirendition="#g">die Räume, welche durch den freien Fall in<lb/>
gleichen hinter einander folgenden Zeitabtheilungen zurückgelegt<lb/>
werden, wachsen wie die ungeraden Zahlen</hi> 1, 3, 5, 7, 9 ....</p></div><lb/><divn="3"><head>§. 485.</head><lb/><p>In den Gleichungen S = g . t<hirendition="#sup">2</hi> und v = 2 g . t kommen (da g bestimmt ist) 3<lb/>
veränderliche Grössen S, t und v vor; wenn daher nur eine Grösse gegeben ist, so kann<lb/>
man die übrigen 2 finden, und zwar:</p><lb/></div></div></div></body></text></TEI>
[535/0567]
Freier Fall der Körper.
dern. Dagegen ist es nicht so schwierig, den Raum zu finden, welchen ein Körper in
einer bestimmten Anzahl von Sekunden zurücklegt.
Genaue Beobachtungen dieser Art sind sehr häufig gemacht worden, und man hat
gefunden, dass der Raum eines Körpers in der ersten Sekunde 15,515 Niederösterreicher
Fuss betrage. Man bezeichnet diesen Raum in der ersten Sekunde gewöhnlich mit dem
Buchstaben g, so dass g = 15,515 Fuss ist. Diess gewährt den Vortheil, dass man nun g
in jedem Lande, wo ein anderes Maass üblich ist, in diesem Maasse berechnen kann.
So beträgt g = 15,098 Pariser Fuss, 15,624 Berliner Fuss u. s. w. Da nun die Gleichung
S = [FORMEL] für den Fallraum der Körper allgemein gilt, so findet sie auch für t = 1 statt,
in welchem Falle S = 15,5 = g wird, und wenn man diess substituirt, so ist
15,5 = [FORMEL] = g, woraus c = 31 Fuss = 2 g folgt, d. h. die Endgeschwindigkeit
eines freifallenden Körpers nach der ersten Sekunde beträgt 31 Fuss; würde daher die
Schwere nach der ersten Sekunde auf den Körper zu wirken aufhören, so würde er in
der zweiten und jeder folgenden Sekunde den Raum von 31 Fuss zurücklegen.
Wir haben daher zur Bestimmung des freien Falles der Körper die 2 Gleichungen
S = [FORMEL] = g . t2 und v = c . t = 2 g . t. *)
§. 484.
Aus der Gleichung S = g . t2 folgt, dass die Räume, welche in verschie-
denen Zeiten bei einer gleichförmig beschleunigten Bewegung
zurückgelegt werden, sich wie die Quadrate dieser Zeiten verhalten.
Wenn man nämlich für t verschiedene Werthe annimmt, und zwar:
t = 0, 1, 2, 3, 4 ......, so ist S = 0, g, 4 g, 9 g, 16 g ......, d. h. die
Räume sind den Quadraten der natürlichen Zahlen proportional; wenn man jedoch in
der Reihe 0, g, 4 g, 9 g, 16 g … die Differenzen nimmt, so betragen selbe
g, 3 g, 5 g, 7 g …, d. h. die Räume, welche durch den freien Fall in
gleichen hinter einander folgenden Zeitabtheilungen zurückgelegt
werden, wachsen wie die ungeraden Zahlen 1, 3, 5, 7, 9 ....
§. 485.
In den Gleichungen S = g . t2 und v = 2 g . t kommen (da g bestimmt ist) 3
veränderliche Grössen S, t und v vor; wenn daher nur eine Grösse gegeben ist, so kann
man die übrigen 2 finden, und zwar:
*) Nach den Gesetzen der Differenzialrechnung wird der Raum d S in einer unendlich kleinen Zeit d t
erhalten, wenn die Geschwindigkeit 2 g . t, womit sich der Körper bewegt, mit d t multiplicirt
wird, indem in der unendlich kleinen Zeit keine Beschleunigung eintritt, also ist d S = 2 g . t . d t.
Das Integral hievon ist S = g . t2, wo keine beständige Grösse beizusetzen kommt, weil für t = 0
der Raum S verschwindet.
Informationen zur CAB-Ansicht
Diese Ansicht bietet Ihnen die Darstellung des Textes in normalisierter Orthographie.
Diese Textvariante wird vollautomatisch erstellt und kann aufgrund dessen auch Fehler enthalten.
Alle veränderten Wortformen sind grau hinterlegt. Als fremdsprachliches Material erkannte
Textteile sind ausgegraut dargestellt.
Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 1: Mechanik fester Körper. Prag, 1831, S. 535. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/gerstner_mechanik01_1831/567>, abgerufen am 23.02.2025.
Alle Inhalte dieser Seite unterstehen, soweit nicht anders gekennzeichnet, einer
Creative-Commons-Lizenz.
Die Rechte an den angezeigten Bilddigitalisaten, soweit nicht anders gekennzeichnet, liegen bei den besitzenden Bibliotheken.
Weitere Informationen finden Sie in den DTA-Nutzungsbedingungen.
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf
diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken
dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder
nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der
Herabwürdigung der Menschenwürde gezeigt werden.
Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des
§ 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen
Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung
der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu
vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
2007–2025 Deutsches Textarchiv, Berlin-Brandenburgische Akademie der Wissenschaften
(Kontakt).
Zitierempfehlung: Deutsches Textarchiv. Grundlage für ein Referenzkorpus der neuhochdeutschen Sprache. Herausgegeben von der Berlin-Brandenburgischen Akademie der Wissenschaften, Berlin 2025. URL: https://www.deutschestextarchiv.de/.